Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of key receptor unlocked; Related proteins will fall like dominoes

06.08.2002


After two years of stubborn persistence, scientists at Johns Hopkins have determined the 3-D structure of part of a protein called HER3, which should speed efforts to interfere with abnormal growth and cancer.



"It took us more than two years to interpret the data and get HER3’s structure," says Dan Leahy, Ph.D., a Howard Hughes Medical Institute investigator and a professor of biophysics in Hopkins’ Institute for Basic Biomedical Sciences. "Now that we have it, it might take only weeks to figure out its relatives."

Reporting the structure in the Aug. 1 online version of Science, Leahy says finding out the shapes of the entire HER family of proteins, HER1, HER2 and HER4, will provide the first opportunity to rationally design new drugs to interfere with them, possibly preventing or treating select forms of cancer.


HER2, for example, is the target of the breast cancer treatment Herceptin, an antibody. But while it’s an effective life-prolonging treatment in certain breast cancer patients, different strategies targeting HER2 might also prove effective. Having a protein’s structure allows scientists to conceive new strategies and pursue new classes of drugs, says Leahy.

A focus of many scientists because of the proteins’ involvement in cell growth, the HER family are receptors for "epidermal growth factor" (EGF) and other chemicals. Although the DNA sequences of HER proteins have been known for some time, technical problems dogged efforts to understand how the proteins are shaped, Leahy says.

"Until we know proteins’ structures, we’re very limited in figuring out how a molecule or possible drug might bind," says Leahy. "We now have a starting point to see how molecules binding to HER3 change its shape and turn it on."

Stuck in the cell membrane, each HER protein consists of three parts: a region outside the cell that recognizes and binds certain molecules; a region that anchors the protein in the cell membrane; and a region inside the cell that, when activated, adds phosphates to various proteins. Leahy and postdoctoral fellow Hyun-Soo Cho determined the structure of the first of these regions for HER3.

Combining a number of available methods, Leahy, Cho and technician Patti Longo purified large amounts of the HER3 receptor region and formed uniform crystals, crucial for figuring out protein structures. By bombarding the crystals with X-rays at the National Synchrotron Light Source at Brookhaven National Laboratory in New York, Cho got the information he needed to start figuring out how the protein looks in space.

In each crystal there are billions of protein molecules, organized in a careful pattern. As the X-rays travel through the crystal, they hit individual atoms in the protein and are bounced back or bent, depending on the 3-D arrangement of the atoms. Others travel through unaffected. By analyzing where the X-rays end up, the scientists can reconstruct how the protein is put together.

One unexpected aspect of the protein’s structure is what Leahy and Cho call the "snap" region -- two finger-like loops that reach out toward one another and interact, stabilizing the structure.

"While it’s all speculation right now, it’s easy to imagine how losing the "snap" interaction might be involved in binding or activation," Leahy says.

HER1 and HER4 have the same sequence of building blocks in the "snap" region, but HER2 does not, which may help explain why HER2 is the only one of the four receptors that interacts only with other HER proteins.


The experiments were funded by the Howard Hughes Medical Institute and the National Institutes of Health.

Media Contact: Joanna Downer 410-614-5105
Email: jdowner1@jhmi.edu

Joanna Downer | EurekAlert!
Further information:
http://www.sciencemag.org/sciencexpress/recent.shtml

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>