Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat sensitive materials change color when hot

05.08.2002


New polymer could prevent burns, food poisoning, traffic accidents



Imagine a fire door that changes color when hot, football jerseys that can tell when a player is overheating, road signs that change color indicating icy road conditions, and food packaging stamps that disappear when products have been kept at room temperature for too long. At the University of Rhode Island, chemists Brett Lucht and Bill Euler and chemical engineer Otto Gregory are working to make these products a reality.
The scientists are developing heat sensitive materials (polymers) that change color at various temperatures. Thus far they have been successful in creating a polymer that changes from red to yellow at 180°Fahrenheit (the temperature at which a person would suffer a burn) and at other warm temperatures.

Work on this project began when Gregory was approached by a company interested in coating cookware with a material that would change color when hot. A polymer was created, but it decomposed upon repeated exposure to high oven temperatures.



Since then, the trio has been successful in placing this polymer in plastics from which it cannot be extracted. This discovery is important to the food storage industry because it is the only FDA approved pigment that changes color.

"This polymer has an important safety application," said Lucht. "It has the potential to prevent people from burning themselves and eating spoiled foods." He calls this "smart packaging" because the packages would tell consumers the temperature of the product. For example, coffee lids could change color at extreme temperatures or milk cartons could have a mark that disappears if the carton reaches room temperature.

Funding for this project is provided by KM Scientific, the URI Foundation, and the URI Transportation Center, which envisions public safety applications for the polymers. The polymers can be added to a variety of products, including plastics, paints, inks, and rubbers. For instance, Gregory recalls when Ford Explorers were experiencing tire blow-outs due to heat caused by improper inflation.

"Using these polymers, we can help to prevent accidents such as these from occurring," he said.

The polymers can also be placed in vinyl seating to warn of hot seats, on the wheels or brakes of trains to show when they are beginning to wear out, on radiator caps and engine hoses to warn of extremely high temperatures, and on road signs to warn drivers of potentially hazardous conditions. "The potential uses for these polymers are endless. These products could forewarn people that they are in potentially dangerous situations," Gregory said.

Lucht and Euler are now concentrating on creating color changes for low temperatures and working on creating polymers that make more than one color change, ideally red for hot and blue for cold. Other vivid colors are also being studied. Gregory is focusing his research on uniformly dispersing polymers throughout different materials.

Todd McLeish | EurekAlert!

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>