Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Heat sensitive materials change color when hot


New polymer could prevent burns, food poisoning, traffic accidents

Imagine a fire door that changes color when hot, football jerseys that can tell when a player is overheating, road signs that change color indicating icy road conditions, and food packaging stamps that disappear when products have been kept at room temperature for too long. At the University of Rhode Island, chemists Brett Lucht and Bill Euler and chemical engineer Otto Gregory are working to make these products a reality.
The scientists are developing heat sensitive materials (polymers) that change color at various temperatures. Thus far they have been successful in creating a polymer that changes from red to yellow at 180°Fahrenheit (the temperature at which a person would suffer a burn) and at other warm temperatures.

Work on this project began when Gregory was approached by a company interested in coating cookware with a material that would change color when hot. A polymer was created, but it decomposed upon repeated exposure to high oven temperatures.

Since then, the trio has been successful in placing this polymer in plastics from which it cannot be extracted. This discovery is important to the food storage industry because it is the only FDA approved pigment that changes color.

"This polymer has an important safety application," said Lucht. "It has the potential to prevent people from burning themselves and eating spoiled foods." He calls this "smart packaging" because the packages would tell consumers the temperature of the product. For example, coffee lids could change color at extreme temperatures or milk cartons could have a mark that disappears if the carton reaches room temperature.

Funding for this project is provided by KM Scientific, the URI Foundation, and the URI Transportation Center, which envisions public safety applications for the polymers. The polymers can be added to a variety of products, including plastics, paints, inks, and rubbers. For instance, Gregory recalls when Ford Explorers were experiencing tire blow-outs due to heat caused by improper inflation.

"Using these polymers, we can help to prevent accidents such as these from occurring," he said.

The polymers can also be placed in vinyl seating to warn of hot seats, on the wheels or brakes of trains to show when they are beginning to wear out, on radiator caps and engine hoses to warn of extremely high temperatures, and on road signs to warn drivers of potentially hazardous conditions. "The potential uses for these polymers are endless. These products could forewarn people that they are in potentially dangerous situations," Gregory said.

Lucht and Euler are now concentrating on creating color changes for low temperatures and working on creating polymers that make more than one color change, ideally red for hot and blue for cold. Other vivid colors are also being studied. Gregory is focusing his research on uniformly dispersing polymers throughout different materials.

Todd McLeish | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>