Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physical map of mouse genome now available

05.08.2002


A physical map of the genetic makeup of a mouse - the mouse genome - is 98 percent complete and is being released online by the journal Nature. Researchers at the Genome Sequencing Center at Washington University School of Medicine in St. Louis played a major role in the international effort, as they did in the sequencing and mapping of the human genome.

"The mouse plays a vital role in research on human biology and disease," says John D. McPherson, Ph.D., associate professor of genetics and the lead investigator on the St. Louis team. "This physical map gives us the big picture of the mouse genome. It will be tremendously helpful to medical investigators and to those studying the human genome."

Comparison of the mouse and human maps, for example, can highlight regions of DNA that control genes. These regions are crucial to understanding the role of genes in health and disease, but they are difficult to find using current methods.



The physical mouse-genome map is a complementary effort to the draft sequence of the mouse genome, which was released last May. The important difference is one of detail and organization, says McPherson.

The draft sequence is a description of the chemical bases--represented by A, C, G, and T--that make up the genome. The physical map organizes and delineates this information on the mouse’s 20 chromosomes. McPherson compared the draft sequence to loose pages from an encyclopedia. The pages may provide a lot of information, but they lack context.

"Each page may provide many details," he says, "like the population and climate of a country. But until all the pages are assembled correctly, you may not know that you are reading about Zaire." A physical map places all the "pages" of DNA sequence in their correct order within each volume, with each volume being a chromosome.

Furthermore, the DNA-sequence information used to compile the physical map was gathered differently from the information used to compile the draft sequence. Because the physical map comes from a separate source of genetic information, the researchers are using it to confirm the accuracy of the draft sequence.

"We are comparing the two independent data sets to be certain they are giving us the same answer," says McPherson.

The physical map benefits medical researchers in another way, as well. It was assembled using longer segments of DNA than those used to assemble the draft sequence. The long segments were grown, or cloned, in bacteria. Now that the mapping is complete, the bacteria containing these bits of mouse genome continue to be grown, stored in freezers, and carefully cataloged. Investigators studying mouse genes or regions of DNA now can locate the location of that particular segment on the map and obtain the actual clone of that region to study, rather than isolating the region themselves.


###
The following centers contributed to the project:
The Wellcome Trust Sanger Institute, Hinxton, Cambridge, England (http://www.sanger.ac.uk)
Genome Sequencing Center, Washington University School of Medicine, St Louis (http://genome.wustl.edu/)
Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada (http://www.bcgsc.bc.ca/)
The Institute for Genome Research, Rockville, MD (http://www.tigr.org/)
Children’s Hospital Oakland Research Institute, Oakland, CA (http://www.childrenshospitaloakland.org/)
EMBL--European Bioinformatics Institute, Hinxton, Cambridge, UK (http://www.ebi.ac.uk)
Department of Electrical Engineering, Washington University, St Louis (http://www.ee.washington.edu/)


The Genome Sequencing Center (GSC) at Washington University School of Medicine in St. Louis focuses on the large scale generation and analysis of DNA sequence. Founded in 1993, the GSC is one of the top sequencing centers in the United States.

Funding from the Wellcome Trust and the National Institutes of Health supported this research.


Darrell Ward | EurekAlert!
Further information:
http://www.nature.com
http://dx.doi.org/10.1038/nature00957

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>