Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of oxidising terpenes holds exciting possibilities for perfumery, flavouring and pharmaceuticals

02.08.2002


Researchers in Oxford University¡¦s Department of Chemistry have devised a new method of selectively oxidising terpenes to produce compounds of particular interest to the perfumery, flavour and pharmaceutical industries.



Terpenes and their derivatives are commonly used in industry to modify flavours and fragrances, and new compounds for trial are continuously needed. The terpenes themselves are not of commercial interest, but rather the derivatives that commonly require stereoselective functionalisation at allylic as well as non-activated C-H bonds of the parent terpene. This is one of the most difficult reactions to carry out by conventional reactions since the highly reactive chemical oxidising agents are typically non-selective.

In the Oxford laboratory, considerable excitement is centred on the capability of introducing hydroxyl groups into specific sites in the molecule with a high degree of stereoselectivity. The researchers have developed a method of oxidising terpenes, or other hydrocarbons of interest, by enzymatic techniques. Indeed, non-activated C-H groups can be targeted. Typically, the oxidation produces high yields of relatively pure compounds.


The enzymes of particular interest are specific mutants of haem-containing enzymes, especially mutants of P450. Currently the mutant enzymes are expressed in E. coli as a host to produce an in vivo oxidation system which can be scaled up to large volumes. Initial work has demonstrated the oxidation of R-limonene to (+)-isopiperitenol or (+)-carveol depending on the enzyme and mutant, camphor to 5-exo-hydroxycamphor, (+)-Ą-pinene to (+)-verbenol and valencene to nootkatone.

Isis Innovation, Oxford University¡¦s technology transfer company, is actively seeking partners for the licensing and commercial development of this promising technology.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>