Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attention acts as visual glue

02.08.2002


When you gaze at a bowl of fruit, why don’t some of the bananas look red, some of the apples look purple and some of the grapes look yellow?

This question isn’t as nonsensical as it may sound. When your brain processes the information coming from your eyes, it stores the information about an object’s shape in one place and information about its color in another. So it’s something of a miracle that the shapes and colors of each fruit are combined seamlessly into distinct objects when you look at them.

Exactly how the brain recombines these different types of visual information after it has broken them apart is called the "binding problem" and is currently the subject of considerable controversy in the neuroscience community. But the results of a brain mapping experiment, published online by the Proceedings of the National Academy of Sciences on July 29, provide significant new support for the theory that attention is the glue that cements visual information together as people scan complex visual scenes.



The study was a collaboration among René Marois, assistant professor of psychology at Vanderbilt; John C. Gore, who recently moved from Yale to become a Chancellor’s University Professor at Vanderbilt; and Yale graduate student Keith M. Shafritz.

"There are more than a dozen places in the brain involved with processing visual information, each specializing in information with slightly different attributes," says Marois. "Some specialize in processing color, some specialize in processing shape, while others specialize in movement. These areas are not clustered together, but distributed widely around the back of the brain."

There are two leading theories about how the brain reintegrates this information.

One view proposes that the neurons in the scattered areas are bound together in a way that allows them to act simultaneously. When you look at a banana, the neurons that store information about the banana’s shape fire simultaneously with the neurons in a different region of the brain that store information about the banana’s color. It is the direct functional interaction between neurons located in different visual areas that binds together an object’s numerous visual properties.

In the 1980’s, Anne M. Triesman at Princeton and her colleagues advanced an alternative mechanism. She proposed that visual binding is mediated by the parietal cortex, an area of the brain known to be involved in spatial attention. She suggested that the act of focusing one’s attention on an object’s spatial location provides the key that binds the different types of visual information together. If an apple is sitting on the table in front of a woman, then her brain, specifically the parietal cortex, associates the information about its color and shape with its location and uses the spatial information to bind together the visual information whenever she focuses her attention on the apple.

The description of a patient who, following a brain injury in the parietal lobe, had difficulty associating colors with more than one object at a time gave Marois the idea for the basic experiment. When the person was presented with objects one at a time, he had no problem properly pairing their shapes and colors. When presented with two or more objects at the same time, however, he often mismatched the color of one object with the shape of another.

So Marois designed a series of trials that asked subjects to concentrate on the shape only, the color only or both shape and color of pairs of objects displayed on a computer screen while their brain activity was monitored using the technique called functional MRI. The researchers presented these pairs to the individuals either sequentially in the same location or simultaneously at different locations and recorded the areas in the brain that were most active.

"The purpose of our study was really to test the attention theory as strongly as we could," says Marois. "I was actually surprised that it worked because we had to adopt such stringent testing conditions."

Despite their stringency, the tests showed that activity in the parietal region increased significantly whenever the individuals were presented with more than one object at the same time.

"This provides strong evidence in favor of the theory that spatial attention is the binding glue that the brain uses to integrate visual objects whenever it is presented with more than one object at the same time, which is most of the time," says Marois.

While the study results support the attention theory, they do not rule out other mechanisms. "In fact," he adds, "it is practically certain that the brain uses several mechanisms to solve this fascinating problem."


The project was funded by a grant from the National Institute of Neurological Disorders and Stroke.

For more news about research at Vanderbilt, visit Exploration, Vanderbilt’s online research magazine at http://exploration.vanderbilt.edu.


David F. Salisbury | EurekAlert!
Further information:
http://exploration.vanderbilt.edu
http://www.vanderbilt.edu/

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>