Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New insight into how eyes become wired to the brain discovered by Salk, UT Southwestern scientists


A crucial piece of the puzzle into how the eye becomes wired to the brain has been revealed by scientists at the Salk Institute for Biological Studies in La Jolla, Calif., and UT Southwestern Medical Center at Dallas.

In findings published in today’s edition of Neuron, the researchers report that a certain class of Eph receptors and ephrin ligands - proteins that cause cells to either repel or attract each other - control how nerve connections from the developing eye form maps that present what we see to visual centers in the brain.

Neurobiologists had long sought to answer how neural maps are established.

"We knew that a certain class of Ephs, the A-class Ephs, were important in mapping the axons on the left-right, or horizontal, axis of the eye into the brain," said Dr. Dennis O’Leary, professor of molecular neurobiology at the Salk Institute and the study’s senior author. "Our new research now identifies how optic axons map the top-bottom, or vertical, axis of the retina into the brain and also defines the biochemical signals used to control this mapping through the analyses of a variety of important mutant mice generated by our colleagues at UT Southwestern."

Earlier work by O’Leary had implicated the B-class Ephs and ephrins, leading to collaboration with Dr. Mark Henkemeyer, assistant professor in the Center for Developmental Biology at UT Southwestern and a co-author of the study. Henkemeyer, whose work focuses on the role of Ephs and ephrins, particularly B-class, in a variety of developmental processes, provided mice that carried mutations in the genes for the EphB receptors.

Today’s published findings don’t have immediate clinical application, Henkemeyer said, but are another important step in understanding how the human nervous system develops and in particular how the retinal axons of the eye form their connections with the brain.

"In my lab, we’re working to understand from a basic molecular level how the nervous system becomes wired," the UT Southwestern researcher said. "If someone gave you a broken Maserati and said, ’Fix it,’ you’d probably like to have a manual that shows how it was put together in the first place. We’re trying to develop that manual for the wiring of the nervous system."

The new research builds on a hypothesis, first suggested in 1963 by Nobel laureate Dr. Roger Sperry, that unidentified molecules guide the mapping of optic axons into the brain. Axons can be likened to electrical wires that grow from nerve cells and carry signals from the nerve cells, much like a cord carries electricity to a lamp.

During eye development, axons grow from different parts of the retina and out the back of the eye, forming the optic nerve. The optic axons grow from four distinct parts of the retina – left-right and top-bottom – and terminate into corresponding specific parts of visual centers in the brain. The wiring scheme allows the brain to properly process the horizontal and vertical dimensions that compose images that are projected onto the retina.

Using the Eph mutant mice provided by Henkemeyer, the Salk Institute researchers, including O’Leary and two of his postdoctoral fellows, Drs. Robert Hindges and Todd McLaughlin, who were co-principal investigators, showed that the interactions of retinal axons expressing B-class Eph receptors with their corresponding ephrins in the brain help guide the axons from the top-bottom or vertical axis of the retina to their proper termination points within the brain. Research from the Salk group had recently shown that A-class Eph receptors and ephrins are the molecules that guide axons from the left-right or horizontal axis of the retina to their proper destinations within the brain.

The Salk group analyzed normal and Eph mutant mice by injecting a fluorescent dye into nerve cells of the retinas. The dye filled the axons and highlighted their paths and terminations in the brain, allowing the researchers to see the wires when the retina and brain were examined under a confocal microscope.

The researchers found that some vertical axis axons in mice lacking proteins EphB2 and EphB3 mapped to incorrect areas of the brain. The study also showed that the vertical axons in normal mice were attracted to their correct destinations by EphB/ephrin-B interaction. In contrast, axons that map along the horizontal axis are directed to their termination points when the A-class Ephs and ephrins involved repel the axons from areas where they don’t belong.

"This work not only helps us to understand how axons normally pathfind during development to reach their intended targets, but it also provides invaluable insights into attractive and repulsive mechanisms that need to be recapitulated following neural injury to rewire the nervous system," Henkemeyer said. "We plan to continue our collaborative effort and investigate these molecules and the mapping process further and hopefully come closer to completing the puzzle."

The research was supported by the National Institutes of Health, the March of Dimes Birth Defects Foundation, the Muscular Dystrophy Association and the Swiss National Science Foundation.

To automatically receive news releases from UT Southwestern via e-mail, send a message to Leave the subject line blank and in the text box, type SUB UTSWNEWS.

Wayne Carter | ErekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>