Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild plant or food plant?

31.07.2002


Fruit rinds provide new clues about crop domestication

Distinctly sculptured opaline phytoliths in soil and plant remains tell archaeologists which plants were present thousands of years ago. However, the production and purpose of these tiny glassy structures common in plant tissues is poorly understood. Dolores Piperno at the Smithsonian Tropical Research Institute (STRI) in Panama and colleagues predict that a single genetic locus controls both lignin and phytolith production in squash (Cucurbita spp.), making phytoliths even better evidence of plant domestication events.

Sometime after the last ice age, inhabitants of the western hemisphere began to select and cultivate food plants. Plant remains at archaeological sites may not be well preserved, but features often contain phytoliths, tiny silica dioxide deposits from plant tissues. These destinctive microfossils have been used increasingly over the last decade in studies of plant domestication, because they clearly identify a number of different crop plants and their wild progenitors.



However, little is known about how plants make phytoliths, and why.

A 1997 study showed that a single gene in maize controls phytolith production, lignification and silification, all characteristics modified when modern maize diverged from its wild ancester, teosinte.

On the hunch that the same might be true for squash, Piperno and Irene Holst from STRI with Linda Wessel-Beaver from the Univeristy of Puerto Rica and Thomas Andres of the Cucurbit Society set about to characterize the rinds of 148 fruits from wild and cultivated species of the squash genus, Cucurbita. They also crossed the plants and characterized the rinds of their offspring.

Thin sections of the soft rinds of domesticated species lacked lignification and big, scalloped phytoliths. All of the species with hard rinds (both wild and domesticated) were lignified and contained phytoliths.

One to one correnspondence between lignification and the presence of phytoliths plus identical segregation patterns for lignin and phytoliths in the fruits of first and second generations of hybridized specimens led the authors to present results in the Proceedings of the National Academy of Sciences postulating a single locus called "hard rind" (Hr) coding for this suite of plant defensive characters in Cucurbita.

They demonstrated that the distinctive shapes and surface sculptoring of the phytoliths are determined by the different types of cell configurations in Cucurbita rinds, as the phytoliths are formed in places in the rinds that are taxonomically useful for identification when rind specimens are analyzed by archaeobotanists.

Identification of a single suite of plant defensive characteristics determined by a single genetic locus will help archaeologists to determine whether plants in ancient samples were domesticated or wild varieties.

Dolores Piperno | EurekAlert!
Further information:
http://www.si.edu/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>