Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanotubes found to fluoresce

30.07.2002


Optical properties could prove useful in biomedical, nanoelectronic applications

Add fluorescence to the growing list of unique physical properties associated with carbon nanotubes -- the ultrasmall, ultrastrong wunderkind of the fullerene family of carbon molecules.

In research detailed in the current issue of Science magazine, a team of Rice University chemists led by fullerene discoverer and Nobel laureate Richard Smalley describes the first observations of fluorescence in carbon nanotubes. Fluorescence occurs when a substance absorbs one wavelength of light and emits a different wavelength in response. The Rice experiments, conducted by Smalley’s group and the photophysics research team of chemist R. Bruce Weisman, found that nanotubes absorbed and gave off light in the near-infrared spectrum, which could prove useful in biomedical and nanoelectronics applications.



"Some of the most sophisticated biomedical tests today -- such as MRI exams -- cannot be performed in a doctor’s office because the equipment too large and too expensive to operate," said Smalley, University Professor at Rice. "Because nothing in the human body fluoresces in the near-infrared spectrum, and human tissue is fairly transparent at that spectrum, one can envision a test apparatus based on this technology that would be as inexpensive and simple to use as ultrasound."

Optical biosensors based on nanotubes could also be targeted to seek out specific targets within the body, such as tumor cells or inflamed tissues. Targeting would be achieved by wrapping the tubes with a protein that would bind only to the target cells. Since nanotubes fluoresce with a single wavelength of light, and different diameter nanotubes give off different wavelengths, it may be possible to tailor different sizes of tubes to seek specific targets, and thus diagnose multiple maladies in a single test using a cocktail of nanotubes.

Carbon nanotubes are a member of the fullerene family of carbon molecules, a third molecular form of carbon that is distinct from diamond and graphite. The discovery of fullerenes in 1985 earned Smalley a share of the Nobel Prize.

Like all fullerenes, carbon nanotubes are extraordinarily stable and almost impervious to radiation and chemical destruction. They’re small enough to migrate through the walls of cells, conduct electricity as well as copper, conduct heat as well as diamond and are 100 times stronger than steel at one-sixth the weight.

Much of Smalley’s current research involves bridging the gap between "wet" nanotechnology -- the molecular, biochemical machinery of life -- and "dry," insoluble nanomaterials like fullerenes. Toward that end, Smalley’s lab has churned out dozens of varieties of soluble fullerenes by wrapping nanotubes in various polymers, including proteins, starches and DNA.

In the fluorescence experiments, Smalley and Weisman’s teams observed the effect only in nanotubes that were untangled and isolated from neighboring tubes. Researchers bombarded clumps of nanotubes with high-frequency sound waves to separate them, and they encased each individual tube in a molecule of sodium dodecylsulfate in order to isolate it from its neighbors. Fluorescence was observed in both plain and polymer-wrapped nanotubes.

In addition to biomedical applications, the fluorescence research could prove useful in the field of nanoelectronics because it confirms that nanotubes are direct band-gap semiconductors, which means they emit light in a way that could be useful for engineers in the fiber optics industry.


The Rice research team included Michael O’Connell, Sergei Bachilo, Chad Huffman, Valerie Moore, Michael Strano, Erik Haroz, Kristy Rialon, Peter Boul, William Noon, Carter Kittrell, Jianpeng Ma and Robert H. Hauge. The research was funded by the National Science Foundation and the Robert A. Welch Foundation.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>