Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hebrew University-Hadassah Medical School researchers working to prevent mad cow disease

29.07.2002


Prion Research Center to open this week



Scientists around the world are striving to learn as much as possible about the phenomenon that causes mad cow disease so that they will be prepared if and when an epidemic breaks out, according to Dr. Albert Taraboulos of the Institute of Microbiology of the Hebrew University-Hadassah Medical School. He explained that the exact incubation period of the disease is unknown and so scientists are working hard to ensure that they are not caught unprepared.

Dr. Taraboulos and his research team are trying to develop drugs that can prevent people from contracting the disease and drugs that can cure those who have contracted it. They also are trying to determine how prions, the molecular agent that causes mad cow disease (or BSE), propagate.


The outbreak of mad cow disease in Europe, and the finding that this fatal neurodegeneration has transmitted to humans, have signaled the appearance of a worldwide health threat and have brought prions to the forefront of public attention. BSE is just one of many prion diseases. Prions are an exception in biology in that they have no genes. In fact, prions are just a corrupt form of one of the patient’s protein, and by corrupting more of our own protein they proliferate and cause disease. Prions are infectious, and more than 100 people have already succumbed to the human form of mad cow disease in Europe. The discovery in Israel, last month, of a cow sick with BSE has demonstrated that Israel is not immune to infectious prions.

Prion disorders are also unique in that they can also be inherited (through a mutation in the prion protein gene). Familial prion diseases include the well known Creutzfeldt-Jakob disease (CJD). Israel has had a long acquaintance with prions. In fact, the largest cluster of familial CJD in the world is found in Israel. A better understanding of prions also may improve understanding of Alzheimer’s disease.

These circumstances have spurred the Hebrew University of Jerusalem and the Hadassah Medical Organization to create the Prion Research Center dedicated to the research of prion diseases in Israel. Located at the Faculty of Medicine, Ein Kerem campus in Jerusalem, this center will conduct and coordinate research programs and epidemiological studies on prions diseases. The center will exploit the extensive prion expertise that is already in place at the campus, particularly in the laboratory of Prof. Ruth Gabizon at the department of Neurology in Hadassah and Dr. Taraboulos’ research team, as well as cooperate with researchers from Israel and abroad.

The new center will combine clinical and basic activities. It will try to improve diagnostic procedures, and will attempt to develop therapies. It will collaborate extensively with government and regulatory agencies in Israel and abroad. It is hoped that the new center will help cull the danger of prion spread in Israel and alleviate patient suffering.

The Prion Research Center will open at a ceremony on Wednesday, July 31 at 5:30 p.m. at the Hebrew University-Hadassah Medical School in Ein Kerem, Jerusalem.

For further information, contact:

Heidi Gleit, HU foreign press liaison: tel. 02-588-2904; cell. 064-454-593; email heidig@savion.cc.huji.ac.il

Orit Sulitzeanu, HU spokeswoman: tel. 02-588-2811

Yael Bossem Levy, Hadassah spokeswoman: tel. 02-677-6220

Heidi Gleit | Hebrew University

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>