Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutrigenomics and metabolomics

29.07.2002


The next step in understanding what the human genome is telling us, especially



Despite some cosmetic differences, we all have the same genetic makeup that evolved from primitive man. Unfortunately, the genes that were in place before the advent of the earliest civilizations were not designed to carry individuals through today’s typical age span, now approximately eight decades of wear and tear. Additionally, the multiple genetic mutations that could survive in ancient times more than likely surrender to the chronic disorders that can be attributed to metabolic stress today. Thus the dramatic increase of those age-related diseases in current times.

Scientists have known that dietary patterns are strongly linked to the development of seven of the ten top causes of morbidity and mortality in the United States, primarily cardiovascular diseases, cancer, and diabetes. Consequently, a scientific and technological revolution has been going on in the areas of nutrition and biochemistry. This revolution has lead to significant new understandings of the role of food and nutrition in human health, and with the Human Genome Project, a new ability to understand the role of genetics in metabolism and health. The advancement of biotechnology into the development of genomics, proteomics (expression of proteins), and metabolomics provides new tools for establishing the role of food and nutrients in human health.


This is the focus of the upcoming presentation, "Genomics and Proteomics: Potential Role In Characterizing Risk for Coronary Heart Disease," being offered by Jose Ordovas, PhD, United States Department of Agriculture, Human Nutrition Research Center on Aging, Tufts University, Boston, MA. His findings are being presented during the 54th Annual Meeting of the American Association for Clinical Chemistry (AACC). AACC (http://www.aacc.org/) is the scientific organization for clinical laboratory professionals, physicians, and research scientists. More than 11,000 attendees are expected for the meeting, which is being held at the Orange County Convention Center, Orlando, FL, July 28-August 1, 2002

Dr. Ordovas, a noted researcher, will present his views on how genomics, metabolomics and informatics can be used to understand how food and nutrients impact gene function and metabolism. He will also discuss the role of "metabolomics" in defining biochemical markers and the effective construction of the data into useful formats through infomatics.

This combination of various disciplines is called "Nutrigenomics," and provides a potential for early identification of those at high risk to metabolic stress and to understand the molecular basis of physiological defects. This has the potential for providing the tools for a more personalized and effective dietary intervention that in some cases may need to be combined with pharmacological therapy.

Background

In the last five million years, our genes have not changed significantly. This is shown by the common occurrence of many genetic variants in all different ethnic groups. Early humans were hunters and gatherers, close to nature, with little obesity. Modern man has a high "waist-to-hip" ratio (obesity) but his genes evolved unable to cope with metabolic stress resulting from the high caloric, high saturated fat diets.

Key to the ability to survive in spite of metabolic stress is the presence of "survival" genetic alleles that in combination with the proper environment will allow them to reach the maximum life span in relatively good health. On the other hand, certain individuals carry predisposing mutations (or polymorphisms) that in combination with the wrong environment will shorten their lives. These subjects will die in their fifties and sixties (or even earlier) from heart disease, cancer, diabetes and other chronic disorders. The extreme situation will be represented by those subjects with genetic diseases, such as familial hypercholesterolemia, who will perish to the disease before their forties.

Cardiovascular disease is the number one killer in the United States and in most industrialized countries and serves to illustrate some of the current advances in nutrigenomics. High-density lipoproteins (HDL) have received the familial name of carriers of the "good cholesterol". This is based on the evidence that increasing concentrations in blood are protective for coronary heart disease (CHD). The major protein in HDL is apoA-I and this is coded by the APOA1 gene. This gene is part of the APOA1-C3-A4 gene complex on chromosome 11 here showing some of the common polymorphism. Dr. Ordovas’ research efforts have demonstrated that the apoC-III/SstI polymorphism may be quite relevant for non-insulin dependent diabetes mellitus (NIDDM) and interaction with dietary habits and ethnicity. Accordingly, the ApoA-IV 360 polymorphism is a marker of dietary response.

Dr. Ordovas believes we now have access to the technology that is allowing us to move forward into the nutrigenomics and later on into the full spectrum of the "-omics" involved in functional genomics. This will allow in furthering understanding of the variant genes, or phenotypes under consideration. The goal of the "-omics" effort is to reach the scientific dream of understanding the complex biochemical pathways and their interaction with the hope of being able to control them and to achieve the maximum life expectancy with the highest quality of life.


Editor’s Note: To interview Dr. Ordovas, please contact Donna Krupa at 703.527.7357 (direct dial), 703.967.2751 (cell) or djkrupa1@aol.com.
Or contact the AACC Newsroom at: 407.685.4215.


Donna Krupa | EurekAlert!

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>