Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutrigenomics and metabolomics

29.07.2002


The next step in understanding what the human genome is telling us, especially



Despite some cosmetic differences, we all have the same genetic makeup that evolved from primitive man. Unfortunately, the genes that were in place before the advent of the earliest civilizations were not designed to carry individuals through today’s typical age span, now approximately eight decades of wear and tear. Additionally, the multiple genetic mutations that could survive in ancient times more than likely surrender to the chronic disorders that can be attributed to metabolic stress today. Thus the dramatic increase of those age-related diseases in current times.

Scientists have known that dietary patterns are strongly linked to the development of seven of the ten top causes of morbidity and mortality in the United States, primarily cardiovascular diseases, cancer, and diabetes. Consequently, a scientific and technological revolution has been going on in the areas of nutrition and biochemistry. This revolution has lead to significant new understandings of the role of food and nutrition in human health, and with the Human Genome Project, a new ability to understand the role of genetics in metabolism and health. The advancement of biotechnology into the development of genomics, proteomics (expression of proteins), and metabolomics provides new tools for establishing the role of food and nutrients in human health.


This is the focus of the upcoming presentation, "Genomics and Proteomics: Potential Role In Characterizing Risk for Coronary Heart Disease," being offered by Jose Ordovas, PhD, United States Department of Agriculture, Human Nutrition Research Center on Aging, Tufts University, Boston, MA. His findings are being presented during the 54th Annual Meeting of the American Association for Clinical Chemistry (AACC). AACC (http://www.aacc.org/) is the scientific organization for clinical laboratory professionals, physicians, and research scientists. More than 11,000 attendees are expected for the meeting, which is being held at the Orange County Convention Center, Orlando, FL, July 28-August 1, 2002

Dr. Ordovas, a noted researcher, will present his views on how genomics, metabolomics and informatics can be used to understand how food and nutrients impact gene function and metabolism. He will also discuss the role of "metabolomics" in defining biochemical markers and the effective construction of the data into useful formats through infomatics.

This combination of various disciplines is called "Nutrigenomics," and provides a potential for early identification of those at high risk to metabolic stress and to understand the molecular basis of physiological defects. This has the potential for providing the tools for a more personalized and effective dietary intervention that in some cases may need to be combined with pharmacological therapy.

Background

In the last five million years, our genes have not changed significantly. This is shown by the common occurrence of many genetic variants in all different ethnic groups. Early humans were hunters and gatherers, close to nature, with little obesity. Modern man has a high "waist-to-hip" ratio (obesity) but his genes evolved unable to cope with metabolic stress resulting from the high caloric, high saturated fat diets.

Key to the ability to survive in spite of metabolic stress is the presence of "survival" genetic alleles that in combination with the proper environment will allow them to reach the maximum life span in relatively good health. On the other hand, certain individuals carry predisposing mutations (or polymorphisms) that in combination with the wrong environment will shorten their lives. These subjects will die in their fifties and sixties (or even earlier) from heart disease, cancer, diabetes and other chronic disorders. The extreme situation will be represented by those subjects with genetic diseases, such as familial hypercholesterolemia, who will perish to the disease before their forties.

Cardiovascular disease is the number one killer in the United States and in most industrialized countries and serves to illustrate some of the current advances in nutrigenomics. High-density lipoproteins (HDL) have received the familial name of carriers of the "good cholesterol". This is based on the evidence that increasing concentrations in blood are protective for coronary heart disease (CHD). The major protein in HDL is apoA-I and this is coded by the APOA1 gene. This gene is part of the APOA1-C3-A4 gene complex on chromosome 11 here showing some of the common polymorphism. Dr. Ordovas’ research efforts have demonstrated that the apoC-III/SstI polymorphism may be quite relevant for non-insulin dependent diabetes mellitus (NIDDM) and interaction with dietary habits and ethnicity. Accordingly, the ApoA-IV 360 polymorphism is a marker of dietary response.

Dr. Ordovas believes we now have access to the technology that is allowing us to move forward into the nutrigenomics and later on into the full spectrum of the "-omics" involved in functional genomics. This will allow in furthering understanding of the variant genes, or phenotypes under consideration. The goal of the "-omics" effort is to reach the scientific dream of understanding the complex biochemical pathways and their interaction with the hope of being able to control them and to achieve the maximum life expectancy with the highest quality of life.


Editor’s Note: To interview Dr. Ordovas, please contact Donna Krupa at 703.527.7357 (direct dial), 703.967.2751 (cell) or djkrupa1@aol.com.
Or contact the AACC Newsroom at: 407.685.4215.


Donna Krupa | EurekAlert!

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>