Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Freie Universität Berlin have discovered a novel kind of learning gene

01.08.2008
Scientists at the Freie Universität Berlin have come one step closer to unraveling the molecular basis of learning. A team led by neurobiologist Björn Brembs has discovered the first gene for operant conditioning in the fruit fly Drosophila.

Their discovery suggests a novel kind of molecular learning mechanism. The study, published in the journal "Current Biology", may help understanding the molecular processes underlying addiction.

For the last 80 years, science has distinguished two forms of associative learning: classical and operant conditioning. Classical conditioning denotes the kind of learning made famous by the Russian physiologist I.P. Pavlov, who trained dogs to salivate in response to the tone of a bell by always feeding the animals after he rang the bell. About 20 years later, the American psychologist B.F. Skinner trained rats to press a lever for a reward - operant conditioning.

Until now, it was assumed that these and many other types of learning relied on a set of well-known learning related genes. This assumption has now been questioned by the results from the scientists in Berlin. Brembs and his team at the Institute for Biology of the Freie Universität Berlin studied the learning performance of genetically engineered fruit flies in a flight simulator.

... more about:
»Brembs »Molecular »conditioning »flies »operant

In the first experiment, the cylindrical drum within which the fly was flying was illuminated alternatingly in blue and green. With, say, blue illumination the flies also received an aversive heat stimulus. This treatment resulted in an avoidance of the color blue.

In a second experiment, the colors and heat were coupled to the turning attempts of the fly such that the blue illumination and heat was always turned on when the fly was attempting to turn right. Thus, similar to Skinner's rats, the flies had the opportunity to actively learn to behave in a certain way - in this case to turn left to avoid being heated.

In a third experiment the scientists tested purely operant learning (behavioral learning). This was done by removing the color stimulus. The fly was still heated when it attempted to turn right, but now there were no colors presented any more.

Flies where the well-known group of learning genes had been manipulated failed miserably in the first to experiments. However, in the third experiments, they learned even better than normal flies.

So far it was assumed that all forms of associative learning rely on the already known set of learning related genes, so Brembs: "Our studies show that the prominent learning genes are not playing any role in purely behavioral learning. Our results suggest that Pavlovian learning somehow suppresses behavioral learning."

Importantly, genetically engineered flies in which the enzyme "protein kinase C" was inhibited, showed an impairment in the purely behavioral third experiment, while they were normal in the other two learning tasks. Brembs posits that the operant, protein kinase C-dependent learning mechanism also underlies so-called "habit formation", which is implied in the acquisition of a drug-taking habit. If that were the case, the development of compulsive drug-taking could be slowed down or even prevented by medication interfering with the protein kinase C pathway.

Whether the same molecular learning mechanisms discovered by Brembs in flies also exist in mammals and maybe even in humans, is still unknown. "To find this out, one would need equivalent studies in mice or rats."

For further information please contact:

Björn Brembs
bjoern@brembs.net, http://brembs.net
Institut für Biologie - Neurobiologie
Freie Universität Berlin
Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
+49-(0)308-385-5050 (lab+office), +49-(0)308-385-5455 (fax)

Christa Beckmann | idw
Further information:
http://www.fu-berlin.de
http://brembs.net/rut-pkc

Further reports about: Brembs Molecular conditioning flies operant

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>