Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A counter to counterfeit drugs

The counterfeiting of medicines has been known of since around 1990 and is a growing problem—in both developing and developed countries.

Counterfeit medicines are estimated as more than 10% of the global medicines market and in some developing countries it is thought to be as high as 50%. One prediction is that global counterfeit drug sales will reach $75 billion by 2010.

Counterfeiting can apply to both branded and generic products, with counterfeit products including drugs with the correct ingredients or with the wrong ingredients; without active ingredients, with insufficient active ingredient or with fake packaging. The increased occurrence of counterfeit medicines has several serious consequences.

These may include illness or death of patients, higher medical insurance and lost revenues to pharmaceutical manufacturers and governments. Children are particularly at risk. Diminished public confidence in both health care providers and the medicines supply chain could indirectly lead to increased illness (as a result of non-adherence) which would strain health care services. Damage to a brand’s credibility could tarnish a manufacturer’s reputation, not to forget the substantial loss of revenues.

... more about:
»Moffat »NIR »ingredient »medicines

The recent discovery of counterfeit medicines in the UK supply chain prompted Professor Moffat, Dr O’Neil and their colleagues at the Centre for Pharmaceutical Analysis, The School of Pharmacy, University of London, to develop a rapid, precise and portable analytical technique for in-field use.

Working with samples provided by the Korean Food and Drugs Agency and a portable transmittance near infrared (NIR) spectrometer developed by NIR Technology Systems they have the answer to identifying counterfeits where they choose. This ability to replace laboratory analysis with the use of a portable instrument at the point of sampling is an attractive option for regulatory authorities. Furthermore, the NIR technique is rapid, precise, non-destructive and costs very little to operate.

Their findings have been published in the latest edition of the Journal of Near Infrared Spectroscopy. “Near infrared spectroscopy is a scientific tool which has helped us understand the differences between genuine and counterfeit drugs, even those which look exactly the same to the naked eye,” Professor Moffat said.

As well as being able to identify counterfeit from genuine tablets, the chemical information provided by NIR spectroscopy helps identify the likely origin of the tablet. Thus law enforcement agencies obtain valuable information about the laboratories manufacturing counterfeit medicines.

The present paper was presented at the 13th International Conference on Near Infrared Spectroscopy in Umeå, Sweden. Professor Moffat, together with his students and collaborators, are also developing the technique of NIR spectroscopy for the quality assurance of medicines and to ensure that manufacturing methods are efficient and effective. “Our studies also have relevance to the formulation development of new medicines to make sure that patients get the right drug at the right amount at the right time”, said Professor Moffat.

Ian Michael | alfa
Further information:

Further reports about: Moffat NIR ingredient medicines

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>