Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Bee's Future as Queen Or Worker May Rest with Parasitic Fly

30.07.2008
Strange things are happening in the lowland tropical forests of Panama and Costa Rica.

A tiny parasitic fly is affecting the social behavior of a nocturnal bee, helping to determine which individuals become queens and which become workers.

The finding by researchers from the University of Washington and the Smithsonian Tropical Research Institute is the first documented example of a parasite having a positive affect on the social behavior of its host. This is accomplished by cleptoparasitism – in this case fly larvae stealing food from the developing immature bees.

The researchers found that smaller bees that emerge in a nest are dominated by their mothers. These small bees are more likely to stay and act as helping workers, while larger bees tend to depart and start new nests as egg-laying queens. Bees that emerge from cells, or brood chambers, that also house flies are smaller than their nest mates from fly-free cells. The flies may encourage worker behavior in some bees.

... more about:
»O’Donnell »affecting »flies »larva

“We often think of parasitism in terms of it affecting an animal’s fitness, its survival or its ability to reproduce,” said Sean O’Donnell, a UW associate professor of psychology and co-author of the paper appearing in the current issue of the Journal of Insect Behavior. “Here the parasite is not living inside another animal, but is still stealing resources from the host.

“We think these fly parasites are not affecting the lifespan of the bees, and the bees’ mothers benefit by having a helper, or worker, stay around to protect the nest, increasing survivability.”

O’Donnell and his colleagues studied two closely related tropical social bees, Megalopta genalis and Megalopta ecuadoria, and a family of very small parasitic flies called Chloropidae.

The bees are important pollinators of night-blooming plants and the female bees can nest alone or live in small colonies. A colony is typically made up of two to four individuals – a queen and her offspring.

Behavioral observations showed that non-reproductive foragers and guards are significantly smaller than the queen bee in a nest, although the relative size of individual bees varied from nest to nest. Here’s where the flies apparently fit in and are affecting the bees’ behavior. The bees nest in hollowed twigs and sticks hanging in the tropical understory and the flies flick their eggs into the entrance to the bee nests. Some of these eggs randomly fall into cells, or chambers, prepared by the bees, each to hold a larva and pollen that the larva eats. The cells are then sealed, so if a cell does contain fly eggs the young flies are competing with the bee larva for a limited amount of food.

“There is a natural size variation in bees and this is based in part on the amount of food available in the cell,” said O’Donnell. “A fly or flies in a cell reducing the amount of food could be a potentially important factor. It seems that the more flies in a cell the smaller the bee is. The key here is relative body size compared to nest mates. The larger individuals become queens because they are not dominated.”

The researchers were able to culture the bees and flies from individual cells and counted as many as 15 of the tiny flies in a single cell. Some cells did not contain flies.

“This study is a counterintuitive take on parasitic infection. It encourages us to look for complicated ecological relationships between different species. Parasitism may encourage sociality in some situations. Here it is promoting social behavior,” O’Donnell said.

Co-authors of the study are Adam Smith and William Wcislo of the Smithsonian Tropical Research Institute. Smith worked with the bees as part of his doctoral work at the UW. The study was funded by the institute, the National Science Foundation and the Secretaria Nacional de Ciencia, Technologia e Innovacion of Panama.

For more information, contact O’Donnell, who is on temporary assignment at the National Science Foundation, at (703) 292-7265 or sodonnel@u.washington.edu

| Newswise Science News
Further information:
http://www.u.washington.edu.

Further reports about: O’Donnell affecting flies larva

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>