Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Hidden' Van Gogh painting revealed

30.07.2008
A new technique allows pictures which were later painted over to be revealed once more.

A An international research team, including members from Delft University of Technology (The Netherlands) and the University of Antwerp (Belgium), has successfully applied this technique for the first time to the painting entitled Patch of Grass by Vincent van Gogh. Behind this painting is a portrait of a woman.

It is well-known that Vincent van Gogh often painted over his older works. Experts estimate that about one third of his early paintings conceal other compositions under them. A new technique, based on synchrotron radiation induced X-ray fluorescence spectroscopy, reveals this type of hidden painting. The techniques usually used to reveal concealed layers of paintings, such as conventional X-ray radiography, have their limitations.

Together with experts from the Deutsches Elektronen-Synchrotron in Hamburg and the Kröller-Müller Museum, TU Delft materials expert and art historian Dr Joris Dik, and University of Antwerp chemistry professor Koen Janssens therefore chose to adopt a different approach. The painting is subjected to an X-ray bundle from a synchrotron radiation source, and the fluorescence of the layers of paint is measured.

... more about:
»Gogh »Radiation »Synchrotron »X-ray »technique

This technique has the major advantage that the measured fluorescence is specific to each chemical element. Each type of atom (e.g. lead or mercury) and also individual paint pigments can therefore be charted individually. The benefit of using synchrotron radiation is that the upper layers of paint distort the measurements to a lesser degree. Moreover, the speed of measurement is high, which allows relatively large areas to be visualised.

Patch of grass

This method was applied to a painting by Vincent van Gogh. The work in question, Patch of Grass, was painted by Van Gogh in Paris in 1887 and is owned by the Kröller-Müller Museum. Previous research had already discovered the vague outline of a head behind the painting. It was scanned at the synchrotron radiation source DORIS at Deutsches Elektronen-Synchrotron DESY in Hamburg using an intense but very small X-ray bundle. Over the course of two days, the area covering the image of a woman’s head was scanned, measuring 17.5 x 17.5 cm.

The measurements enabled researchers to reconstruct the concealed painting in unparalleled detail. In particular the combination of the distribution of the elements mercury and antimony (from specific paint pigments) provided a 'colour photo' of the portrait which had been painted over.

The reconstruction enables art historians to understand the evolution of Van Gogh’s work better. The applied technique is expected to pave the way for research into many other concealed paintings.

Dr. Joris Dik | alfa
Further information:
http://www.tudelft.nl
http://www.tudelft.nl/live/pagina.jsp?id=6383a391-d2c6-4341-bcd0-62cba4cff50b&lang=en

Further reports about: Gogh Radiation Synchrotron X-ray technique

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>