Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Hidden' Van Gogh painting revealed

A new technique allows pictures which were later painted over to be revealed once more.

A An international research team, including members from Delft University of Technology (The Netherlands) and the University of Antwerp (Belgium), has successfully applied this technique for the first time to the painting entitled Patch of Grass by Vincent van Gogh. Behind this painting is a portrait of a woman.

It is well-known that Vincent van Gogh often painted over his older works. Experts estimate that about one third of his early paintings conceal other compositions under them. A new technique, based on synchrotron radiation induced X-ray fluorescence spectroscopy, reveals this type of hidden painting. The techniques usually used to reveal concealed layers of paintings, such as conventional X-ray radiography, have their limitations.

Together with experts from the Deutsches Elektronen-Synchrotron in Hamburg and the Kröller-Müller Museum, TU Delft materials expert and art historian Dr Joris Dik, and University of Antwerp chemistry professor Koen Janssens therefore chose to adopt a different approach. The painting is subjected to an X-ray bundle from a synchrotron radiation source, and the fluorescence of the layers of paint is measured.

... more about:
»Gogh »Radiation »Synchrotron »X-ray »technique

This technique has the major advantage that the measured fluorescence is specific to each chemical element. Each type of atom (e.g. lead or mercury) and also individual paint pigments can therefore be charted individually. The benefit of using synchrotron radiation is that the upper layers of paint distort the measurements to a lesser degree. Moreover, the speed of measurement is high, which allows relatively large areas to be visualised.

Patch of grass

This method was applied to a painting by Vincent van Gogh. The work in question, Patch of Grass, was painted by Van Gogh in Paris in 1887 and is owned by the Kröller-Müller Museum. Previous research had already discovered the vague outline of a head behind the painting. It was scanned at the synchrotron radiation source DORIS at Deutsches Elektronen-Synchrotron DESY in Hamburg using an intense but very small X-ray bundle. Over the course of two days, the area covering the image of a woman’s head was scanned, measuring 17.5 x 17.5 cm.

The measurements enabled researchers to reconstruct the concealed painting in unparalleled detail. In particular the combination of the distribution of the elements mercury and antimony (from specific paint pigments) provided a 'colour photo' of the portrait which had been painted over.

The reconstruction enables art historians to understand the evolution of Van Gogh’s work better. The applied technique is expected to pave the way for research into many other concealed paintings.

Dr. Joris Dik | alfa
Further information:

Further reports about: Gogh Radiation Synchrotron X-ray technique

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>