Student, Prof Present Research on Invasive Weed

Senior Jonathan Finger of Algonquin, Ill., launched a research project into methods for controlling garlic mustard in the spring of 2007 at Pierce Cedar Creek Institute in southwestern Michigan. He said garlic mustard, which plagues the Midwest and has aggressively invaded fields and forests from the East Coast to the West Coast, is more than a mere nuisance.

“The weed produces a chemical that poisons nearby plants, so not only does it compete with and overpower native plants, it down right poisons them,” Finger said. “Garlic mustard is killing our country’s biodiversity.”

With assistance from Dr. Laurie Eberhardt, associate professor of biology, Finger has conducted a series of experiments on and off campus to determine whether garlic mustard’s poison could be controlled with activated carbon, a form of carbon usually derived from charcoal.

During research last summer at Pierce Cedar Creek – supported by a $6,000 grant from the Institute’s Undergraduate Research Grants for the Environment program – Finger applied activated carbon to test plots where garlic mustard was either present or absent. He then observed differences in the growth of the native plants.

That summer research was followed up by laboratory experiments on campus during the past academic year. One of those experiments looked at the effects of garlic mustard’s poisonous secretions on the germination of native columbine seeds and whether activated charcoal could reduce the negative impact of those chemicals. In a second experiment, columbine was germinated in soil either rich in garlic mustard chemicals or soil without any of the chemicals to see if the chemicals damaged wildflowers post-germination.

The results of Finger’s experiments indicate that applying activated carbon in places where native plants are threatened by garlic mustard can help them – and the wildlife that rely on native flora – survive.

“When my proposed treatment of activated charcoal was added to columbine exposed to the garlic mustard toxins, germination rates increased compared to those without the treatment,” Finger said. “This leads to the idea that activated charcoal may be a way to give wildflowers a fighting chance against poorly-behaved plants like garlic mustard.”

Finger and Dr. Eberhardt will present their study on the use of activated carbon to alleviate garlic mustard’s toxic effects on Aug. 8, the final day of the Ecological Society of America conference, which begins Aug. 3 in Milwaukee.

Dr. Eberhardt said it is rare for undergraduate students to be invited to present their research at the society’s annual conference, which is expected to draw more than 3,500 scientists, students and educators.

While not preparing for the conference presentation, Finger has split his summer working at the Environmental Learning Center at Indiana Dunes National Lakeshore and at the Shirley Heinze Land Trust.

Finger spends his weekday mornings and afternoons doing field restoration for the Shirley Heinze Land Trust, a non-profit organization dedicated to preserving and protecting the unique ecosystems of the Indiana Dunes region.

“I’m out in their nature preserves applying herbicide, cutting trees and being an overall steward of the land,” said Finger, a student in Valparaiso’s interdisciplinary honors college (Christ College).

After finishing his field restoration work each day, Finger heads to his second job as a naturalist-trainee at the Indiana Dunes. He helps run summer camps at the Environmental Learning Center and lives in a cabin with elementary to high school age boys who are learning about nature, ecology and how to be a responsible environmentalist during the week-long camps.

Media Contact

Dustin J. Wunderlich Newswise Science News

More Information:

http://www.cur.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors