Make Your Own Microfluidic Device with New Kit

University of Michigan engineers are seeking to change that with a 16-piece lab-on-a-chip kit that brings microfluidic devices to the scientific masses. The kit cuts the costs involved and the time it takes to make a microfluidic device from days to minutes, says Mark Burns, a professor in the departments of Biomedical Engineering and Chemical Engineering who developed the device with graduate student Minsoung Rhee.

“In a lot of fields, there can be significant scientific advances made using microfluidic devices and I think that has been hindered because it does take some degree of skill and equipment to make these devices,” Burns said. “This new system is almost like Lego blocks. You don't need any fabrication skills to put them together.”

A lab-on-a-chip integrates multiple laboratory functions onto one chip just millimeters or centimeters in size. It is usually made of nano-scale pumps, chambers and channels etched into glass or metal. These microfluidic devices that operate with drops of liquid about the size of the period at the end of this sentence allow researchers to conduct quick, efficient experiments. They can be engineered to mimic the human body more closely than the Petri dish does. They're useful in growing and testing cells, among other applications.

Burns' system offers six-by-six millimeter blocks etched with different arrangements of grooves researchers can use to make a custom device by sticking them to a piece of glass. Block designs include inlets, straight channels, Ts, Ys, pitchforks, crosses, 90-degree curves, chambers, connectors (imprinted with a block M for Michigan), zigzags, cell culture beds and various valves. The blocks can be used more than once.

Most of the microfluidic devices that life scientists currently need require a simple channel network design that can be easily accomplished with this new system, Burns said. To demonstrate the viability of his system, he successfully grew E. coli cells in one of these modular devices.

Burns believes microfluidics will go the way of computers, smaller and more personal as technology advances.

“Thirty or 40 years ago, computing was done on large-scale systems. Now everyone has many computers, on their person, in their house…. It's my vision that in another few decades, you'll see this trend in microfluidics,” Burns said. “You'll be analyzing chicken to see if it has salmonella. You'll be analyzing yourself to see if you have influenza or analyzing the air to see if it has noxious elements in it.”

A paper on the new system called “Microfluidic assembly blocks” will be published in Lab on a Chip.

Media Contact

Nicole Casal Moore Newswise Science News

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors