Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defining DNA Differences to Track and Tackle Typhoid

28.07.2008
New-technology genome sequencing study reveals new genetic signatures

For the first time, next-generation DNA sequencing technologies have been turned on typhoid fever - a disease that kills 600,000 people each year. The results will help to improve diagnosis, tracking of disease spread and could help to design new strategies for vaccination.

The study sets a new standard for analysing the evolution and spread of a disease-causing bacterium: it is the first study of multiple samples of any bacterial pathogen at this level of detail. It uncovers previously hidden genetic signatures of the evolution of individual lineages of Salmonella Typhi.

The team developed methods that are being used to type outbreaks, allowing researchers to identify individual organisms that are spreading in the population: using Google Earth, the outbreaks can be easily visualized. The team hope that these mapping data can be used to target vaccination campaigns more successfully with the aim of eradicating typhoid fever.

... more about:
»Genome »Typhi »typhoid »vaccination

Unlike most related Salmonella species, and in contrast to many other bacteria, Typhi is found only in humans and the genomes of all isolates are superficially extremely similar, hampering attempts to track infections or to type more prevalent variants. The detail of the new study transforms the ability of researchers to tackle Typhi.

"Modern genomic methods can be used to develop answers to diseases that have plagued humans for many years," explains Professor Gordon Dougan from the Wellcome Trust Sanger Institute and senior author on the study. "Genomes are a legacy of an organism's existence, indicating the paths it has taken and the route it is on. This analysis suggests we may have found Typhi's Achilles' heel: in adapting to an exclusively human lifestyle, it has become complacent, its genome is undergoing genetic decay and it's heading up an evolutionary dead end in humans.

"We believe that concerted vaccination programmes, combined with epidemiological studies aiming to track down and treat carriers, could be used to eradicate typhoid as a disease."

There are 17 million cases of Typhoid fever each year - although the World Health Organization cautions that this is a 'very conservative' estimate. Young people are most at risk: in Indonesia, nine out of ten cases occur in 3–19-year-olds.

"A key to survival of Salmonella Typhi is its ability to lie dormant in carriers, who show no symptoms but remain able to infect others," says Kathryn Holt, a PhD student at the Wellcome Trust Sanger Institute and first author on the study. "Our new tools will assist us in tracing the source of typhoid outbreaks, potentially even to infected carriers, allowing those individuals to be treated to prevent further spread of the disease.

"Using the genomic biology of this study, we can now type Typhi, identify the strain that is causing infection, identify carriers and direct vaccination programmes most efficiently. It is a remarkable step forward."

The study is a collaboration between researchers at the Wellcome Trust Sanger Institute, University College, Cork, Institut Pasteur in Paris and Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam. The team studied 19 isolates of Typhi from ten countries, using new sequencing methods that meant they could capture the rare signals of genetic variation in this stubborn genome. They produced more than 1.7 billion letters of genetic sequence and found evidence of fewer than 2000 mutation events, suggesting very little evolution since the emergence of Typhi at least 15,000 years ago.

Their analysis shows that the Typhi genome is decaying - as it becomes more closely allied to us, its human host, it is losing genes that are superfluous to life in the human body. More importantly, genes that contain instructions for the proteins on the surface of the bacterium - those most often attacked by our immune system defences - vary much less than do the equivalent genes in most other bacteria, suggesting that Typhi has a strategy to circumvent the selective pressures of our immune system.

"Both the genome and the proteins that make up the surface of Typhi - the targets for vaccines - show amazingly little variation," says Professor Julian Parkhill, Head of Pathogen Genomics. "We have been able to use novel technologies, developed for the analysis of human genome variation, to identify this variation: this would have been impossible a year ago. The technologies we have developed here could also be used in the battles against other disease-causing bacteria."

Don Powell | alfa
Further information:
http://www.sanger.ac.uk

Further reports about: Genome Typhi typhoid vaccination

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>