Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Francisella tularensis: stopping a biological weapon

28.07.2008
Scientists hope a vaccine is on the horizon for tularemia, a fatal disease caused by the pathogen Francisella tularensis, an organism of concern as a potential biological warfare agent.

Until recently we knew very little about this bacterium. However, according to the August issue of the Journal of Medical Microbiology, research on the bacterium has been reinvigorated and rapid progress has been made in understanding how it causes disease.

Infection with F. tularensis can result in a variety of symptoms, depending on the route of infection. For example, infection via an insect bite can lead to a swollen ulcer or fever, chills, malaise, headaches and a sore throat. When infection occurs by eating contaminated food, symptoms can range from mild diarrhoea to an acute fatal disease. If inhaled, F. tularensis infections can have a 30% mortality rate if left untreated.

"Only very few bacteria are needed to cause serious disease," said Prof Petra Oyston from Dstl, Porton Down. "Because of this and the fact that tularemia can be contracted by inhalation, Francisella tularensis has been designated a potential biological weapon. Since the events of September 2001 and the subsequent anthrax attacks on the USA, concern about the potential misuse of dangerous pathogens including F. tularensis has increased. As a result, more funding has been made available for research on these organisms and has accelerated progress on developing medical countermeasures."

Tularemia circulates in rodents and animals like rabbits and hares. Outbreaks in humans often happen at the same time as outbreaks in these animals. The disease is probably transmitted by insects like mosquitoes, ticks and deer flies. People can also become infected by contact with contaminated food or water and by breathing in particles containing the bacteria. Farmers, hunters, walkers and forest workers are most at risk of contracting tularemia.

There is currently no vaccine against tularemia. Because there are few natural cases of tularemia, money was not spent on the development of a vaccine. However, various nations developed F. tularensis as a biological weapon, including the reported production of antibiotic-resistant strains, so research into its pathogenesis has become a biodefence issue.

"Progress is being made," said Prof. Oyston. "Since the genome of F. tularensis was sequenced, researchers have taken great strides in understanding the molecular basis for its pathogenesis. This is essential information for developing a vaccine and getting it licensed."

We are still unsure about the function of most F. tularensis genes. "Recently genes needed by F. tularensis for growth and survival have been identified," said Prof. Oyston. "These could be targets for novel antimicrobial development or could be used in the production of a vaccine."

"Although we are getting closer to addressing key issues such as the need for an effective vaccine, it appears we are still some way from understanding the pathogenesis of F. tularensis. More research is needed in this area."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

Further reports about: Francisella Infection Pathogen tularemia tularensis weapon

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>