Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Francisella tularensis: stopping a biological weapon

28.07.2008
Scientists hope a vaccine is on the horizon for tularemia, a fatal disease caused by the pathogen Francisella tularensis, an organism of concern as a potential biological warfare agent.

Until recently we knew very little about this bacterium. However, according to the August issue of the Journal of Medical Microbiology, research on the bacterium has been reinvigorated and rapid progress has been made in understanding how it causes disease.

Infection with F. tularensis can result in a variety of symptoms, depending on the route of infection. For example, infection via an insect bite can lead to a swollen ulcer or fever, chills, malaise, headaches and a sore throat. When infection occurs by eating contaminated food, symptoms can range from mild diarrhoea to an acute fatal disease. If inhaled, F. tularensis infections can have a 30% mortality rate if left untreated.

"Only very few bacteria are needed to cause serious disease," said Prof Petra Oyston from Dstl, Porton Down. "Because of this and the fact that tularemia can be contracted by inhalation, Francisella tularensis has been designated a potential biological weapon. Since the events of September 2001 and the subsequent anthrax attacks on the USA, concern about the potential misuse of dangerous pathogens including F. tularensis has increased. As a result, more funding has been made available for research on these organisms and has accelerated progress on developing medical countermeasures."

Tularemia circulates in rodents and animals like rabbits and hares. Outbreaks in humans often happen at the same time as outbreaks in these animals. The disease is probably transmitted by insects like mosquitoes, ticks and deer flies. People can also become infected by contact with contaminated food or water and by breathing in particles containing the bacteria. Farmers, hunters, walkers and forest workers are most at risk of contracting tularemia.

There is currently no vaccine against tularemia. Because there are few natural cases of tularemia, money was not spent on the development of a vaccine. However, various nations developed F. tularensis as a biological weapon, including the reported production of antibiotic-resistant strains, so research into its pathogenesis has become a biodefence issue.

"Progress is being made," said Prof. Oyston. "Since the genome of F. tularensis was sequenced, researchers have taken great strides in understanding the molecular basis for its pathogenesis. This is essential information for developing a vaccine and getting it licensed."

We are still unsure about the function of most F. tularensis genes. "Recently genes needed by F. tularensis for growth and survival have been identified," said Prof. Oyston. "These could be targets for novel antimicrobial development or could be used in the production of a vaccine."

"Although we are getting closer to addressing key issues such as the need for an effective vaccine, it appears we are still some way from understanding the pathogenesis of F. tularensis. More research is needed in this area."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

Further reports about: Francisella Infection Pathogen tularemia tularensis weapon

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>