Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broken DNA Must Find Right Partners Quickly Amid Repairs

25.07.2008
A gene called ATM suppresses DNA break-induced chromosome translocations, which are present in some cancers and predict the success or failure of therapies for those cancers. The research, described in this week's issue of Nature, was performed at The University of Texas Health Science Center at San Antonio.

Just as square dance partners join hands at a particular point in the music, so broken pieces of DNA in our cells reunite as they are repaired. Precisely and quickly, these DNA pieces identify each other and tether together. A tumor-suppressor gene called ATM choreographs this fast-paced, but reliable, reassembly operation.

Sometimes the process goes awry. An ATM mutation predisposes children to cancers. In this week’s issue of Nature, researchers at The University of Texas Health Science Center at San Antonio describe this gene’s regulatory work more fully than ever before.

The paper, from the UT Health Science Center’s Institute of Biotechnology, is among the first to describe the molecular basis of chromosome translocations. These errors occur when genes from one chromosome glom onto another chromosome. Chromosomes are the tightly wrapped coils of DNA found in every cell.

... more about:
»ATM »Chromosome »DNA »proteins »translocation

Lead author Sang Eun Lee, Ph.D., associate professor of molecular medicine at the Health Science Center, suspected that chromosome translocations occur during DNA repair. DNA repair is the continuous process in which our genetic blueprint, or DNA, fixes damage caused by sunlight, diet, oxygen and chemicals that ding our DNA.

“This DNA repair process is usually highly accurate and reliable, but occasionally DNA makes the mistake of reshuffling or jumbling together material,” said Dr. Lee, a member of the Cancer Development and Progression Program of the Cancer Therapy & Research Center at the UT Health Science Center. “Translocations are found in many cancers, particularly leukemia. The presence of translocations predicts the success or failure of treatments for these cancers.”

Philadelphia chromosome-positive chronic myelogenous leukemia, a rare and aggressive cancer, involves translocation of genetic material from chromosomes 9 and 22, for example.

“The thing we haven’t understood is how chromosome translocations happen,” Dr. Lee said. “Our study recreated translocations in yeast cells. We monitored the translocation events in the context of DNA repair, which we believed to be the culprit.”

The researchers observed ATM-led machinery that prohibits chromosome translocations during DNA repair. ATM “traffic-controls” many other proteins, Dr. Lee said.

“When damage occurs, a chromosome, like thread, can be broken,” he said. “With exposure to radiation or other mutating agent, a chromosome may break in multiple places. Thankfully our DNA moves to repair this.”

Snippets of DNA, separated from adjacent snippets of the same chromosome, must reunite with them quickly. “Partner selections are very important, and we found that this selection occurs in a very short window of time,” Dr. Lee said. “We also observed the tethering together. Again, the gene central to all of this is ATM.”

The majority of children with ATM deficiency die at a young age from cancer. ATM mutation causes the disease ataxia telangiectsia.

“We were missing why ATM causes cancers,” Dr. Lee said. “Its strategic role in DNA repair, described in this paper, explains it.”

These observations may make it possible to tweak cellular machinery to prevent translocations and to develop anti-cancer drugs that bypass ATM deficiency by regulating gene proteins that interact with ATM.

Dr. Lee said information gleaned from the yeast cell experiments is extremely relevant to human cells “since the DNA repair mechanism is extremely well conserved across species.”

“Dr. Lee is following these chromosome events in real time during the repair process,” said Z. Dave Sharp, Ph.D., associate professor and interim chairman of the Department of Molecular Medicine at the Health Science Center. “The proteins he studied are in yeast, but these proteins carry out the same function in human cells. That’s the reason this paper is in Nature.”

The National Institutes of Health and the Leukemia Lymphoma Society funded the study. Members of Dr. Lee’s lab who worked on the project are Kihoon Lee, graduate student, and Yu Zhang, Ph.D., former graduate student.

About the UT Health Science Center San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $576 million, the Health Science Center is the chief catalyst for the $15.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $35 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 23,000 graduates (physicians, dentists, nurses, scientists and allied health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, allied health, dentistry and many other fields. For more information, visit http://www.uthscsa.edu.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu.

Further reports about: ATM Chromosome DNA proteins translocation

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>