Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broken DNA Must Find Right Partners Quickly Amid Repairs

25.07.2008
A gene called ATM suppresses DNA break-induced chromosome translocations, which are present in some cancers and predict the success or failure of therapies for those cancers. The research, described in this week's issue of Nature, was performed at The University of Texas Health Science Center at San Antonio.

Just as square dance partners join hands at a particular point in the music, so broken pieces of DNA in our cells reunite as they are repaired. Precisely and quickly, these DNA pieces identify each other and tether together. A tumor-suppressor gene called ATM choreographs this fast-paced, but reliable, reassembly operation.

Sometimes the process goes awry. An ATM mutation predisposes children to cancers. In this week’s issue of Nature, researchers at The University of Texas Health Science Center at San Antonio describe this gene’s regulatory work more fully than ever before.

The paper, from the UT Health Science Center’s Institute of Biotechnology, is among the first to describe the molecular basis of chromosome translocations. These errors occur when genes from one chromosome glom onto another chromosome. Chromosomes are the tightly wrapped coils of DNA found in every cell.

... more about:
»ATM »Chromosome »DNA »proteins »translocation

Lead author Sang Eun Lee, Ph.D., associate professor of molecular medicine at the Health Science Center, suspected that chromosome translocations occur during DNA repair. DNA repair is the continuous process in which our genetic blueprint, or DNA, fixes damage caused by sunlight, diet, oxygen and chemicals that ding our DNA.

“This DNA repair process is usually highly accurate and reliable, but occasionally DNA makes the mistake of reshuffling or jumbling together material,” said Dr. Lee, a member of the Cancer Development and Progression Program of the Cancer Therapy & Research Center at the UT Health Science Center. “Translocations are found in many cancers, particularly leukemia. The presence of translocations predicts the success or failure of treatments for these cancers.”

Philadelphia chromosome-positive chronic myelogenous leukemia, a rare and aggressive cancer, involves translocation of genetic material from chromosomes 9 and 22, for example.

“The thing we haven’t understood is how chromosome translocations happen,” Dr. Lee said. “Our study recreated translocations in yeast cells. We monitored the translocation events in the context of DNA repair, which we believed to be the culprit.”

The researchers observed ATM-led machinery that prohibits chromosome translocations during DNA repair. ATM “traffic-controls” many other proteins, Dr. Lee said.

“When damage occurs, a chromosome, like thread, can be broken,” he said. “With exposure to radiation or other mutating agent, a chromosome may break in multiple places. Thankfully our DNA moves to repair this.”

Snippets of DNA, separated from adjacent snippets of the same chromosome, must reunite with them quickly. “Partner selections are very important, and we found that this selection occurs in a very short window of time,” Dr. Lee said. “We also observed the tethering together. Again, the gene central to all of this is ATM.”

The majority of children with ATM deficiency die at a young age from cancer. ATM mutation causes the disease ataxia telangiectsia.

“We were missing why ATM causes cancers,” Dr. Lee said. “Its strategic role in DNA repair, described in this paper, explains it.”

These observations may make it possible to tweak cellular machinery to prevent translocations and to develop anti-cancer drugs that bypass ATM deficiency by regulating gene proteins that interact with ATM.

Dr. Lee said information gleaned from the yeast cell experiments is extremely relevant to human cells “since the DNA repair mechanism is extremely well conserved across species.”

“Dr. Lee is following these chromosome events in real time during the repair process,” said Z. Dave Sharp, Ph.D., associate professor and interim chairman of the Department of Molecular Medicine at the Health Science Center. “The proteins he studied are in yeast, but these proteins carry out the same function in human cells. That’s the reason this paper is in Nature.”

The National Institutes of Health and the Leukemia Lymphoma Society funded the study. Members of Dr. Lee’s lab who worked on the project are Kihoon Lee, graduate student, and Yu Zhang, Ph.D., former graduate student.

About the UT Health Science Center San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $576 million, the Health Science Center is the chief catalyst for the $15.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $35 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 23,000 graduates (physicians, dentists, nurses, scientists and allied health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, allied health, dentistry and many other fields. For more information, visit http://www.uthscsa.edu.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu.

Further reports about: ATM Chromosome DNA proteins translocation

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>