Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Broken DNA Must Find Right Partners Quickly Amid Repairs

A gene called ATM suppresses DNA break-induced chromosome translocations, which are present in some cancers and predict the success or failure of therapies for those cancers. The research, described in this week's issue of Nature, was performed at The University of Texas Health Science Center at San Antonio.

Just as square dance partners join hands at a particular point in the music, so broken pieces of DNA in our cells reunite as they are repaired. Precisely and quickly, these DNA pieces identify each other and tether together. A tumor-suppressor gene called ATM choreographs this fast-paced, but reliable, reassembly operation.

Sometimes the process goes awry. An ATM mutation predisposes children to cancers. In this week’s issue of Nature, researchers at The University of Texas Health Science Center at San Antonio describe this gene’s regulatory work more fully than ever before.

The paper, from the UT Health Science Center’s Institute of Biotechnology, is among the first to describe the molecular basis of chromosome translocations. These errors occur when genes from one chromosome glom onto another chromosome. Chromosomes are the tightly wrapped coils of DNA found in every cell.

... more about:
»ATM »Chromosome »DNA »proteins »translocation

Lead author Sang Eun Lee, Ph.D., associate professor of molecular medicine at the Health Science Center, suspected that chromosome translocations occur during DNA repair. DNA repair is the continuous process in which our genetic blueprint, or DNA, fixes damage caused by sunlight, diet, oxygen and chemicals that ding our DNA.

“This DNA repair process is usually highly accurate and reliable, but occasionally DNA makes the mistake of reshuffling or jumbling together material,” said Dr. Lee, a member of the Cancer Development and Progression Program of the Cancer Therapy & Research Center at the UT Health Science Center. “Translocations are found in many cancers, particularly leukemia. The presence of translocations predicts the success or failure of treatments for these cancers.”

Philadelphia chromosome-positive chronic myelogenous leukemia, a rare and aggressive cancer, involves translocation of genetic material from chromosomes 9 and 22, for example.

“The thing we haven’t understood is how chromosome translocations happen,” Dr. Lee said. “Our study recreated translocations in yeast cells. We monitored the translocation events in the context of DNA repair, which we believed to be the culprit.”

The researchers observed ATM-led machinery that prohibits chromosome translocations during DNA repair. ATM “traffic-controls” many other proteins, Dr. Lee said.

“When damage occurs, a chromosome, like thread, can be broken,” he said. “With exposure to radiation or other mutating agent, a chromosome may break in multiple places. Thankfully our DNA moves to repair this.”

Snippets of DNA, separated from adjacent snippets of the same chromosome, must reunite with them quickly. “Partner selections are very important, and we found that this selection occurs in a very short window of time,” Dr. Lee said. “We also observed the tethering together. Again, the gene central to all of this is ATM.”

The majority of children with ATM deficiency die at a young age from cancer. ATM mutation causes the disease ataxia telangiectsia.

“We were missing why ATM causes cancers,” Dr. Lee said. “Its strategic role in DNA repair, described in this paper, explains it.”

These observations may make it possible to tweak cellular machinery to prevent translocations and to develop anti-cancer drugs that bypass ATM deficiency by regulating gene proteins that interact with ATM.

Dr. Lee said information gleaned from the yeast cell experiments is extremely relevant to human cells “since the DNA repair mechanism is extremely well conserved across species.”

“Dr. Lee is following these chromosome events in real time during the repair process,” said Z. Dave Sharp, Ph.D., associate professor and interim chairman of the Department of Molecular Medicine at the Health Science Center. “The proteins he studied are in yeast, but these proteins carry out the same function in human cells. That’s the reason this paper is in Nature.”

The National Institutes of Health and the Leukemia Lymphoma Society funded the study. Members of Dr. Lee’s lab who worked on the project are Kihoon Lee, graduate student, and Yu Zhang, Ph.D., former graduate student.

About the UT Health Science Center San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $576 million, the Health Science Center is the chief catalyst for the $15.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $35 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 23,000 graduates (physicians, dentists, nurses, scientists and allied health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, allied health, dentistry and many other fields. For more information, visit

Will Sansom | Newswise Science News
Further information:

Further reports about: ATM Chromosome DNA proteins translocation

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>