Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broken DNA Must Find Right Partners Quickly Amid Repairs

25.07.2008
A gene called ATM suppresses DNA break-induced chromosome translocations, which are present in some cancers and predict the success or failure of therapies for those cancers. The research, described in this week's issue of Nature, was performed at The University of Texas Health Science Center at San Antonio.

Just as square dance partners join hands at a particular point in the music, so broken pieces of DNA in our cells reunite as they are repaired. Precisely and quickly, these DNA pieces identify each other and tether together. A tumor-suppressor gene called ATM choreographs this fast-paced, but reliable, reassembly operation.

Sometimes the process goes awry. An ATM mutation predisposes children to cancers. In this week’s issue of Nature, researchers at The University of Texas Health Science Center at San Antonio describe this gene’s regulatory work more fully than ever before.

The paper, from the UT Health Science Center’s Institute of Biotechnology, is among the first to describe the molecular basis of chromosome translocations. These errors occur when genes from one chromosome glom onto another chromosome. Chromosomes are the tightly wrapped coils of DNA found in every cell.

... more about:
»ATM »Chromosome »DNA »proteins »translocation

Lead author Sang Eun Lee, Ph.D., associate professor of molecular medicine at the Health Science Center, suspected that chromosome translocations occur during DNA repair. DNA repair is the continuous process in which our genetic blueprint, or DNA, fixes damage caused by sunlight, diet, oxygen and chemicals that ding our DNA.

“This DNA repair process is usually highly accurate and reliable, but occasionally DNA makes the mistake of reshuffling or jumbling together material,” said Dr. Lee, a member of the Cancer Development and Progression Program of the Cancer Therapy & Research Center at the UT Health Science Center. “Translocations are found in many cancers, particularly leukemia. The presence of translocations predicts the success or failure of treatments for these cancers.”

Philadelphia chromosome-positive chronic myelogenous leukemia, a rare and aggressive cancer, involves translocation of genetic material from chromosomes 9 and 22, for example.

“The thing we haven’t understood is how chromosome translocations happen,” Dr. Lee said. “Our study recreated translocations in yeast cells. We monitored the translocation events in the context of DNA repair, which we believed to be the culprit.”

The researchers observed ATM-led machinery that prohibits chromosome translocations during DNA repair. ATM “traffic-controls” many other proteins, Dr. Lee said.

“When damage occurs, a chromosome, like thread, can be broken,” he said. “With exposure to radiation or other mutating agent, a chromosome may break in multiple places. Thankfully our DNA moves to repair this.”

Snippets of DNA, separated from adjacent snippets of the same chromosome, must reunite with them quickly. “Partner selections are very important, and we found that this selection occurs in a very short window of time,” Dr. Lee said. “We also observed the tethering together. Again, the gene central to all of this is ATM.”

The majority of children with ATM deficiency die at a young age from cancer. ATM mutation causes the disease ataxia telangiectsia.

“We were missing why ATM causes cancers,” Dr. Lee said. “Its strategic role in DNA repair, described in this paper, explains it.”

These observations may make it possible to tweak cellular machinery to prevent translocations and to develop anti-cancer drugs that bypass ATM deficiency by regulating gene proteins that interact with ATM.

Dr. Lee said information gleaned from the yeast cell experiments is extremely relevant to human cells “since the DNA repair mechanism is extremely well conserved across species.”

“Dr. Lee is following these chromosome events in real time during the repair process,” said Z. Dave Sharp, Ph.D., associate professor and interim chairman of the Department of Molecular Medicine at the Health Science Center. “The proteins he studied are in yeast, but these proteins carry out the same function in human cells. That’s the reason this paper is in Nature.”

The National Institutes of Health and the Leukemia Lymphoma Society funded the study. Members of Dr. Lee’s lab who worked on the project are Kihoon Lee, graduate student, and Yu Zhang, Ph.D., former graduate student.

About the UT Health Science Center San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $576 million, the Health Science Center is the chief catalyst for the $15.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $35 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 23,000 graduates (physicians, dentists, nurses, scientists and allied health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, allied health, dentistry and many other fields. For more information, visit http://www.uthscsa.edu.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu.

Further reports about: ATM Chromosome DNA proteins translocation

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>