Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Lotus Effect

23.07.2008
Carbon nanotubes with nanoscopic paraffin coating form superhydrophobic, self-cleaning surfaces

Never wash your car again? Never clean your windows? These may well become reality if it becomes possible to produce the right coatings—coatings that imitate the self-cleaning effect of the lotus blossom.

A research team led by Ayyappanpillai Ajayaghosh at the National Institute for Interdisciplinary Science and Technology (Trivandrum, India) has made significant progress toward this goal. As they report in the journal Angewandte Chemie, these scientists have successfully produced a superhydrophobic, self-cleaning surface. Their success results from carbon nanotubes having a nanometer-thick paraffin coating with the help of a rigid aromatic molecule called para-phenylenevinylene.

The lotus plant has given its name to a natural self-cleaning mechanism: The extremely water-repellent (superhydrophobic) surface of its leaves causes drops of water to form spheres, which roll off the leaf, sweeping any dirt away. The lotus leaf is equipped with 3 to 10 µm “bumps” that are in turn coated with a nanoscopic water-repellent coating. The bumpy structure minimizes the area with which the water can come into contact and the water-repellent coating keeps water from getting into the valleys between the bumps. The water cannot coat the leaf and simply rolls off.

... more about:
»Carbon »self-cleaning »water-repellent

The researchers started with carbon nanotubes—long, hollow fibers made of carbon atoms in a honeycomb-like arrangement. Using a self-assembly process, they attached organic molecules to the exterior of the tubes. These molecules consist of a short backbone of aromatic six-membered carbon rings that supports several long hydrocarbon chains. The aromatic rings attach themselves firmly to the honeycomb structure of the nanotubes; the hydrocarbon chains act like a paraffin-like coating. The research team applied a dispersion of these adducts to glass, metal, and mica surfaces. Once dry, the result was a water-repellent coating with stable self-cleaning properties.

Electron microscopic images show that the coating does not have a regular structure like the leaves of the lotus, but does have comparable nanoscale roughness. Water has as much trouble coating these artificial surfaces as the lotus leaf. A tilt angle of 2° is sufficient to cause water droplets to roll off. Like the lotus, any dust is removed from the surface by the water droplets.

Ayyappanpillai Ajayaghosh | Angewandte Chemie International
Further information:
http://w3rrlt.csir.res.in

Further reports about: Carbon self-cleaning water-repellent

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>