Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the stress of forested areas

23.07.2008
Plants undergo stress because of lack of water, due to the heat or the cold or to excess of light.

A research team from the University of the Basque Country have analysed the substances that are triggered in plants to protect themselves, with the goal of choosing the species that is best suited to the environment during reforestation under adverse environmental conditions.

Droughts, extreme temperatures, contamination, and so on – all are harmful to plants. On occasions, the damage is caused by humans. For example, as a consequence of cutting down trees, plants used to shady conditions may be exposed to an excess of light. However, in most cases it is nature itself that causes the stress. In spring, plants have sufficient average humidity and temperatures, i.e. what scientists deem ‘optimum conditions’.

But in winter they have to withstand considerable cold and in summer, on the other hand, high temperatures and droughts: adverse environmental factors that generate stress situations. Thus, in winter and in summer, the light which under normal conditions would be a source of energy becomes excessive, given that the metabolism of the plants under these conditions is not able to assimilate it. This process is known as photo-oxidative stress.

... more about:
»Cycle »Energy »conditions »excess »species »substances

Some plants are incapable of withstanding this stress – unable to dissipate the excess energy, generating a chain reaction by which they deteriorate and die. Other species, on the other hand, undergo processes of acclimatising themselves to the new situation and trigger chemical compounds that act to protect them. These species are the object of interest of a research team from the Department of Plant Biology and Ecology at the Faculty of Science and Technology of the University of the Basque Country (UPV/EHU).

The members of this team – called EKOFISKO and led by Dr. Txema Becerril – are studying the plants’ defence mechanisms in order to predict damage before it is produced. They measure the photo-protector substances created by the plants and analyse their behaviour, using them as biosensors of photo-oxidative stress.

Amongst all these plants, they have been studying trees and other forest species, given that they are long-cycle species and it is important that they acclimatize correctly to the environment before reforestation is embarked upon. The autochthonous species of the Autonomous Community of the Basque Country (CAPV), especially the southern part thereof, being where the two climatic regions - the Atlantic and the Mediterranean – meet, would be the first to suffer the consequences of climate change. The study mainly involves species with ecological, economic or landscape interest, and analyses both the deciduous species and the perennial varieties; particularly the latter as they withstand the cold winter temperatures without shedding their leaves.

On the trail of the box tree

The box is a model species and a good example for analysing the defence mechanisms of plants: it is capable of withstanding quite different environments (both dry and sunny climes as well as damp and shaded conditions), thanks to its resistance and adaptability. When it is under stress, the leaves go red, as other species do in autumn, but its peculiarity is that it is able to convert its chromoplasts (where the red pigments accumulate) into chloroplasts (with green pigments) and once again capture energy when the stress conditions disappear.

In order to measure the biomarkers of photo-oxidative stress the research team also simulated the winter or summer conditions in the greenhouse and in the growing rooms at the Faculty of Science and Technology, i.e. they artificially induced in the plants the conditions which they would have to be subjected. This makes it possible to isolate each one of the stress agents and to study its consequences, leaving aside the rest of the variables found in nature.

According to what the research team at the UPV/EHU have shown, the secret to being the most adaptable species lies in accumulating antioxidants, such as vitamin E and special carotenoids (carotenes and xantophylls); precisely the substances that provide colour to plants. On receiving too much light, the VAZ cycle is triggered and the balance between three xantophylls (corresponding to these 3 initials) is altered so that the excess energy does not harm the plants.

The human body, for example, is not capable of creating these highly important substances itself and it has to ingest vegetables in order to obtain antioxidants (from plants). Besides studying the VAZ cycle, Mr Txema Becerril’s team has contributed to the discovery of a new cycle (the lutein epoxide cycle), present in many forest species such as beech, laurel, holm oak or oak and the team is currently studying what exactly is its protective function.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1832&hizk=I

Further reports about: Cycle Energy conditions excess species substances

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>