Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofilms use chemical weapons

23.07.2008
Researcher at the Helmholtz Centre for Infection Research discovers defence strategies used by biofilm bacteria

Bacteria rarely come as loners; more often they grow in crowds and squat on surfaces where they form a community together. These so-called biofilms develop on any surface that bacteria can attach themselves to.

The dilemma we face is that neither disinfectants and antibiotics, nor phagocytes and our immune system can destroy these biofilms. This is a particular problem in hospitals if these bacteria form a community on a catheter or implant where they could potentially cause a serious infection.

Scientists at the Helmholtz Centre for Infection Research in Braunschweig have now identified one of the fundamental mechanisms used by the bacteria in biofilms to protect themselves against the attacking phagocytes. The scientists are now publishing their findings in the renowned specialist publication PLoS ONE, together with colleagues from Australia, Great Britain and the USA – the discovery being that biofilm bacteria use chemical weapons to defend themselves.

... more about:
»Chemical »amoebae »bacteria »phagocytes

Until now, scientists have been unable to understand the root of the biofilm problem – the inability of phagocytes to destroy these biofilms. Dr. Carsten Matz decided to investigate this problem. As a model for his investigation, this Braunschweig-based researcher decided to look at marine bacteria. They face constant threats in their habitat from environmental phagocytes, the amoebae, which behave in a similar way in the sea as the immune cells in our body: they seek out and feed on the bacteria.

So long as bacteria are swimming freely and separately in the water, they are easy pickings for these predators. However, if they become attached to a surface and socialize with other bacteria, the amoebae can no longer successfully attack them. “The surprising thing was that the amoebae attacking the biofilms were de-activated or even killed. The bacteria are clearly not just building a fortress, they are also fighting back,” says Carsten Matz.

The bacteria utilise chemical weapons to achieve this. A widespread and highly effective molecule used by marine bacteria is the pigment violacein. Once the defence system is ready, the biofilm shimmers a soft purple colour. If the attackers consume just a single cell of the biofilm – and the pigment they contain – this paralyses the attackers momentarily and the violacein triggers a suicide mechanism in the amoebae.

“I feel that these results could offer a change of perspective,” says Carsten Matz. “Biofilms may no longer be seen just as a problem; they may also be a source of new bioactive agents. When organized in biofilms, bacteria produce highly effective substances which individual bacteria alone cannot produce.” And the scientists hope to use these molecules to combat a specific group of pathogens: Human parasites that cause devastating infections such as sleeping illness and malaria. Amoeba are ancient relatives of these pathogens and thus biofilm-derived weapons may provide an excellent basis for the design of new parasiticidal drugs.

Hannes Schlender | alfa
Further information:
http://www.helmholtz-hzi.de

Further reports about: Chemical amoebae bacteria phagocytes

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>