Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofilms use chemical weapons

23.07.2008
Researcher at the Helmholtz Centre for Infection Research discovers defence strategies used by biofilm bacteria

Bacteria rarely come as loners; more often they grow in crowds and squat on surfaces where they form a community together. These so-called biofilms develop on any surface that bacteria can attach themselves to.

The dilemma we face is that neither disinfectants and antibiotics, nor phagocytes and our immune system can destroy these biofilms. This is a particular problem in hospitals if these bacteria form a community on a catheter or implant where they could potentially cause a serious infection.

Scientists at the Helmholtz Centre for Infection Research in Braunschweig have now identified one of the fundamental mechanisms used by the bacteria in biofilms to protect themselves against the attacking phagocytes. The scientists are now publishing their findings in the renowned specialist publication PLoS ONE, together with colleagues from Australia, Great Britain and the USA – the discovery being that biofilm bacteria use chemical weapons to defend themselves.

... more about:
»Chemical »amoebae »bacteria »phagocytes

Until now, scientists have been unable to understand the root of the biofilm problem – the inability of phagocytes to destroy these biofilms. Dr. Carsten Matz decided to investigate this problem. As a model for his investigation, this Braunschweig-based researcher decided to look at marine bacteria. They face constant threats in their habitat from environmental phagocytes, the amoebae, which behave in a similar way in the sea as the immune cells in our body: they seek out and feed on the bacteria.

So long as bacteria are swimming freely and separately in the water, they are easy pickings for these predators. However, if they become attached to a surface and socialize with other bacteria, the amoebae can no longer successfully attack them. “The surprising thing was that the amoebae attacking the biofilms were de-activated or even killed. The bacteria are clearly not just building a fortress, they are also fighting back,” says Carsten Matz.

The bacteria utilise chemical weapons to achieve this. A widespread and highly effective molecule used by marine bacteria is the pigment violacein. Once the defence system is ready, the biofilm shimmers a soft purple colour. If the attackers consume just a single cell of the biofilm – and the pigment they contain – this paralyses the attackers momentarily and the violacein triggers a suicide mechanism in the amoebae.

“I feel that these results could offer a change of perspective,” says Carsten Matz. “Biofilms may no longer be seen just as a problem; they may also be a source of new bioactive agents. When organized in biofilms, bacteria produce highly effective substances which individual bacteria alone cannot produce.” And the scientists hope to use these molecules to combat a specific group of pathogens: Human parasites that cause devastating infections such as sleeping illness and malaria. Amoeba are ancient relatives of these pathogens and thus biofilm-derived weapons may provide an excellent basis for the design of new parasiticidal drugs.

Hannes Schlender | alfa
Further information:
http://www.helmholtz-hzi.de

Further reports about: Chemical amoebae bacteria phagocytes

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>