Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virulence factor that induces fatal Candida infection identified

21.07.2008
Culprit is factor produced by intestinal bacteria

Scientists here have found that certain substances from bacteria living in the human intestine cause the normally harmless Candida albicans fungus to become highly infectious.

This discovery by researchers at Singapore's Agency for Science, Technology and Research (A*STAR)'s Institute of Molecular and Cell Biology (IMCB) could possibly lead to the development of novel treatments for immunocompromised patients infected by the fungus.

The team of scientists, led by Associate Professor Wang Yue, a principal investigator at the IMCB, identified peptidoglycan (PGN) — a carbohydrate from bacteria — as a factor responsible for causing the conversion of the otherwise harmless C. albicans to its infectious form.

... more about:
»Infection »Infectious »albicans »bacteria »fungus

The research findings were recently published in the current journal Cell Host & Microbe.

Once in the infectious form, the fungus is able to invade surrounding tissues and escape destruction by the body's own immune cells. Since immunocompromised patients such as those with AIDS or those undergoing chemotherapy or radiation treatment are extremely susceptible to fungal-induced systemic infections, this finding offers an important clue to the basis of C. albicans infections.

After confirming the presence of PGN-derived molecules in human blood, the researchers discovered that the fungus is able to "sense" the presence of the same molecules, which are produced in abundance by bacteria residing in the gastrointestinal track. Earlier studies suggested that PGNs can enter the blood stream through the intestinal wall.

When direct binding of the PGN-derived molecules to a specific protein in C. albicans takes place, it triggers interactions and "sensing" processes that induce the fungus to start growing long, threadlike tubes called hyphae, hence signifying its conversion to the virulent, life-threatening form.

This is the first time that the identities of the "inducer" and that of its "sensor" in C. albicans have been clearly established.

Said Wang, who has been working on C. albicans for more than eight years, "It has been more than 50 years since human blood was first found to contain molecules that can strongly induce C. albicans infection. In spite of efforts by many laboratories worldwide, the identity of the 'inducer' remained elusive.

Thus, we are very excited about being able to help solve this long-held mystery. Finding the PGN sensor in C. albicans is also of great importance, because we can now develop anti-Candida therapies by blocking the sensory mechanism."

According to UNAIDS statistics, the AIDS pandemic claimed an estimated 2.1 million lives in 2007 alone. The latest findings by the Singapore researchers may provide insight for the development of potential anti-Candida therapy in patients suffering from fungal-induced systemic infections.

Previous research breakthroughs by the IMCB team included the discovery of the gene involved in triggering the infectious form of C. albicans, as well as the way in which the gene and its by-products facilitated the transformation process of the fungus.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.a-star.edu.sg/
http://www.imcb.a-star.edu.sg

Further reports about: Infection Infectious albicans bacteria fungus

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>