Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a new signaling mechanism may lead to novel anti-inflammatory therapy

21.07.2008
A team of researchers at the University of California, San Diego School of Medicine has uncovered a new signaling mechanism used to activate protein kinases that are critical for the body's inflammatory response. Their work will be published in the July 18 online edition of Science (Science Express.).

"In addition to helping explain the basic mechanisms of transmembrane receptor signaling, these results may identify a potential therapy for interfering with inflammation," said Michael Karin, Ph.D., professor of pharmacology and pathology in UC San Diego's Laboratory of Gene Regulation and Signal Transduction.

The tumor necrosis factor (TNF) receptor (TNFR) family codes for a large number of cell surface receptors of great biomedical importance, and its signaling mechanisms have been the subject of intense investigation during the past decade. Specific inhibitors of TNF receptor 1 (TNFR1) activation are being used in the treatment of rheumatoid arthritis, psoriasis and inflammatory bowel disease, and receptor activator of NF-êB (RANK) inhibitors were recently found to be effective in the treatment of osteoporosis and other bone loss diseases.

Now Atsushi Matsuzawa, Ph.D., and Ping-Hui Tseng, Ph.D., postdoctoral fellows in the Karin laboratory, describe how engagement of CD40, a member of the TNFR family, results in assembly of multiprotein signaling complexes at the receptor. However, according to the researchers – and contrary to previous expectations – signaling cascades that lead to activation of Jun Kinases (JNK) and p38 MAP Kinases (MAPK) are not initiated until these complexes dissociate from the receptor.

... more about:
»activation »mechanism »receptor

The authors found that complex translocation from the cell surface receptor to the cytoplasm, which is required for JNK and p38 activation, depends on degradation of a signaling protein called TRAF3. This process can be inhibited by a class of compounds known as Smac mimics.

"As Smac mimic compounds do not interfere with the activation of NF-êB-dependent innate immunity but do prevent the induction of JNK- and p38- dependent inflammatory mediators, they may serve as the prototypes for new anti-inflammatory therapy," said Karin, who also noted that current drugs that work by interfering with TNFR signaling exceed $5 billion a year in revenue.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: activation mechanism receptor

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>