Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery of a new signaling mechanism may lead to novel anti-inflammatory therapy

A team of researchers at the University of California, San Diego School of Medicine has uncovered a new signaling mechanism used to activate protein kinases that are critical for the body's inflammatory response. Their work will be published in the July 18 online edition of Science (Science Express.).

"In addition to helping explain the basic mechanisms of transmembrane receptor signaling, these results may identify a potential therapy for interfering with inflammation," said Michael Karin, Ph.D., professor of pharmacology and pathology in UC San Diego's Laboratory of Gene Regulation and Signal Transduction.

The tumor necrosis factor (TNF) receptor (TNFR) family codes for a large number of cell surface receptors of great biomedical importance, and its signaling mechanisms have been the subject of intense investigation during the past decade. Specific inhibitors of TNF receptor 1 (TNFR1) activation are being used in the treatment of rheumatoid arthritis, psoriasis and inflammatory bowel disease, and receptor activator of NF-êB (RANK) inhibitors were recently found to be effective in the treatment of osteoporosis and other bone loss diseases.

Now Atsushi Matsuzawa, Ph.D., and Ping-Hui Tseng, Ph.D., postdoctoral fellows in the Karin laboratory, describe how engagement of CD40, a member of the TNFR family, results in assembly of multiprotein signaling complexes at the receptor. However, according to the researchers – and contrary to previous expectations – signaling cascades that lead to activation of Jun Kinases (JNK) and p38 MAP Kinases (MAPK) are not initiated until these complexes dissociate from the receptor.

... more about:
»activation »mechanism »receptor

The authors found that complex translocation from the cell surface receptor to the cytoplasm, which is required for JNK and p38 activation, depends on degradation of a signaling protein called TRAF3. This process can be inhibited by a class of compounds known as Smac mimics.

"As Smac mimic compounds do not interfere with the activation of NF-êB-dependent innate immunity but do prevent the induction of JNK- and p38- dependent inflammatory mediators, they may serve as the prototypes for new anti-inflammatory therapy," said Karin, who also noted that current drugs that work by interfering with TNFR signaling exceed $5 billion a year in revenue.

Debra Kain | EurekAlert!
Further information:

Further reports about: activation mechanism receptor

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>