Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A microcosm in the seafloor

21.07.2008
Nature article presents new evidence about the "deep biosphere"

On July 20th, 2008, scientists from the Center of Marine Environmental Sciences (MARUM) at Bremen University and their Japanese colleagues published an article on microbial life deep beneath the seafloor.

The researchers show that - expressed in terms of carbon mass - this so-called deep biosphere contains about 90 billion tons of microbial organisms. That corresponds to about one tenth of the amount of carbon stored globally in tropical rainforests. Applying novel methods, the German-Japanese team concluded that about 87 percent of the deep biosphere consists of Archaea. This is in stark contrast to former reports, which suggested that Bacteria dominate the subseafloor ecosystem.

A team led by Prof. Kai-Uwe Hinrichs investigated sediment samples from several hundred meters beneath the seafloor. The sediment cores were retrieved in the Atlantic and the Pacific Oceans as well as in the Black Sea, most of them well below the ocean floor during expeditions of the Integrated Ocean Drilling Program (IODP). The scientists pursued two main objectives: "We wanted to find out which microorganisms can be found in the seafloor, and how many of them are living down there", states biogeochemist Kai-Uwe Hinrichs.

... more about:
»Archaea »Carbon »bacteria »biosphere

For quite a long time, scientists believed that the extreme conditions such as high pressure, lack of oxygen, low supply of nutrients and energy would make deep sub-seafloor environments inhabitable for any life form. But now they know better: Sea-going expeditions have proven the existence of the deep biosphere. "In general, life at and below the seafloor is dominated by minute monocellular organisms. According to our analyses, Bacteria dominate the upper ten centimeters of the seafloor. Below this level, Archaea appear to take over the major fraction of the biomass pool", says MARUM researcher Julius Lipp, who has just completed his PhD on this subject.

According to Lipp, Archaea make up at least 87 percent of organisms that colonize the deep biosphere. "These subsurface Archaea can be viewed as starvelings. Compared to Bacteria, Archaea appear to be better adapted to the extreme, chronic deficiency of energy that characterizes this habitat - a consequence of the only food being stable, fossil remnants of plants that were pre-digested by generations of other microorganisms"", says Lipp.

Next to Bacteria, Archaea represent one of three domains in the systematics of life. Both groups can be identified by fat-like molecules, so-called lipids that make up their cell membranes. To date, estimations of the deep biosphere biomass range from about 60 to 300 billion tons of carbon. "Our measurements determined by entirely independent means are with 90 billion tons of carbon right in this bracket", says Prof. Hinrichs, head of the Organic Geochemistry Group at MARUM and the Department of Geosciences, Bremen University. The authors of the Nature paper assume that about 200 million cubic kilometers of mud below the ocean floor are inhabited by microorganisms - a volume roughly corresponding to a 600 kilometer-long cube.

Because all current techniques aimed at detecting biomass in the deep biosphere arrive at different conclusions regarding its quantity and composition, Prof. Hinrichs has initiated an international "ring experiment". Currently, his colleagues in German, European, US-American, and Japanese laboratories are investigating standardized sediment samples from the seafloor with different methods. Moreover, they want to find out whether identical methods applied in different labs lead to dissimilar results. The aim is to gain a more reliable picture of life in the deep biosphere. In September, the researchers involved in the experiment will present and discuss their findings at MARUM. "All participants hope that this experiment will shed a bit more light on the dark deep biosphere" Hinrichs states.

Further information/interviews/photos:

Yasmin Khalil
MARUM Public Relations
Fon: +49 - 421 - 218-65541
Email: ykhalil@marum.de
Prof. Kai-Uwe Hinrichs
MARUM Organic Geochemistry
Fon: +49 - 421 - 218-65700
Email: khinrichs@uni-bremen.de

Yasmin Khalil | idw
Further information:
http://www.marum.de

Further reports about: Archaea Carbon bacteria biosphere

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>