Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A microcosm in the seafloor

21.07.2008
Nature article presents new evidence about the "deep biosphere"

On July 20th, 2008, scientists from the Center of Marine Environmental Sciences (MARUM) at Bremen University and their Japanese colleagues published an article on microbial life deep beneath the seafloor.

The researchers show that - expressed in terms of carbon mass - this so-called deep biosphere contains about 90 billion tons of microbial organisms. That corresponds to about one tenth of the amount of carbon stored globally in tropical rainforests. Applying novel methods, the German-Japanese team concluded that about 87 percent of the deep biosphere consists of Archaea. This is in stark contrast to former reports, which suggested that Bacteria dominate the subseafloor ecosystem.

A team led by Prof. Kai-Uwe Hinrichs investigated sediment samples from several hundred meters beneath the seafloor. The sediment cores were retrieved in the Atlantic and the Pacific Oceans as well as in the Black Sea, most of them well below the ocean floor during expeditions of the Integrated Ocean Drilling Program (IODP). The scientists pursued two main objectives: "We wanted to find out which microorganisms can be found in the seafloor, and how many of them are living down there", states biogeochemist Kai-Uwe Hinrichs.

... more about:
»Archaea »Carbon »bacteria »biosphere

For quite a long time, scientists believed that the extreme conditions such as high pressure, lack of oxygen, low supply of nutrients and energy would make deep sub-seafloor environments inhabitable for any life form. But now they know better: Sea-going expeditions have proven the existence of the deep biosphere. "In general, life at and below the seafloor is dominated by minute monocellular organisms. According to our analyses, Bacteria dominate the upper ten centimeters of the seafloor. Below this level, Archaea appear to take over the major fraction of the biomass pool", says MARUM researcher Julius Lipp, who has just completed his PhD on this subject.

According to Lipp, Archaea make up at least 87 percent of organisms that colonize the deep biosphere. "These subsurface Archaea can be viewed as starvelings. Compared to Bacteria, Archaea appear to be better adapted to the extreme, chronic deficiency of energy that characterizes this habitat - a consequence of the only food being stable, fossil remnants of plants that were pre-digested by generations of other microorganisms"", says Lipp.

Next to Bacteria, Archaea represent one of three domains in the systematics of life. Both groups can be identified by fat-like molecules, so-called lipids that make up their cell membranes. To date, estimations of the deep biosphere biomass range from about 60 to 300 billion tons of carbon. "Our measurements determined by entirely independent means are with 90 billion tons of carbon right in this bracket", says Prof. Hinrichs, head of the Organic Geochemistry Group at MARUM and the Department of Geosciences, Bremen University. The authors of the Nature paper assume that about 200 million cubic kilometers of mud below the ocean floor are inhabited by microorganisms - a volume roughly corresponding to a 600 kilometer-long cube.

Because all current techniques aimed at detecting biomass in the deep biosphere arrive at different conclusions regarding its quantity and composition, Prof. Hinrichs has initiated an international "ring experiment". Currently, his colleagues in German, European, US-American, and Japanese laboratories are investigating standardized sediment samples from the seafloor with different methods. Moreover, they want to find out whether identical methods applied in different labs lead to dissimilar results. The aim is to gain a more reliable picture of life in the deep biosphere. In September, the researchers involved in the experiment will present and discuss their findings at MARUM. "All participants hope that this experiment will shed a bit more light on the dark deep biosphere" Hinrichs states.

Further information/interviews/photos:

Yasmin Khalil
MARUM Public Relations
Fon: +49 - 421 - 218-65541
Email: ykhalil@marum.de
Prof. Kai-Uwe Hinrichs
MARUM Organic Geochemistry
Fon: +49 - 421 - 218-65700
Email: khinrichs@uni-bremen.de

Yasmin Khalil | idw
Further information:
http://www.marum.de

Further reports about: Archaea Carbon bacteria biosphere

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>