Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Spotted hyenas can increase survival rates by hunting alone

Recent research by Michigan State University doctoral student Jennifer Smith has shed new light on the way spotted hyenas live together and – more importantly – hunt for their food alone.

In a paper recently published in the journal Animal Behaviour, Smith, a student in MSU’s Department of Zoology, shows that while spotted hyenas know the value of living together in large, cooperative societies, they also realize that venturing on their own now and then to hunt for food is often the key to their survival.

“Although spotted hyenas do cooperatively hunt, there is a large cost for doing that,” said Smith, who did her research at the Masai Mara National Reserve in Kenya. “This cost is feeding competition within their own group.”

The problem is that spotted hyenas live in a social group, they all know each other and there is a well-established hierarchy. So when a kill is made, it is the spotted hyenas that are higher up on the totem pole that get to eat.

... more about:
»MSU »hyenas »prey »survival

Smith and colleagues report that spotted hyenas do join forces to protect themselves from danger. They aggregate to defend their food from their natural enemy – the lion, and cooperate during turf battles with neighboring hyenas. And, it is easier for spotted hyenas to catch prey when they do so in teams.

“Although spotted hyenas are 20 percent more likely to capture prey with one or more members of their social group, cooperative hunting results in multiple new competitors showing up because former allies quickly turn into noisy competitors once the kill is made,” she said. “So it’s the individual, especially if he or she is low in the hierarchy, that suffers a cost for having group members at that prey.”

It is known that more than a million years ago spotted hyenas were solitary scavengers. “My research,” said Smith, “shows because there is this cost of competition, that spotted hyenas retained this ability to remove themselves from the larger social group to hunt.”

Scientifically speaking, this is known as fission-fusion dynamics – members of the same society repeatedly splitting up from the group (fission) and then reuniting (fusion).

“Human societies exhibit fission-fusion dynamics,” Smith said. “For example, we repeatedly depart from our loved ones in the morning and then rejoin them in the evening.”

Spotted hyenas, like humans, frequently leave one another but rejoin on a regular basis to maintain social relationships, especially with family members.

Collaborating with Smith were Kay Holekamp, MSU professor of zoology, and fellow MSU students Joseph Kolowski, Katharine Graham and Stephanie Dawes.

A copy of the paper is available online along with more information about the research of Smith and Holekamp.

For additional information, go to the Special Report on hyenas.

Michigan State University has been advancing knowledge and transforming lives through innovative teaching, research and outreach for more than 150 years. MSU is known internationally as a major public university with global reach and extraordinary impact. Its 17 degree-granting colleges attract scholars worldwide who are interested in combining education with practical problem solving.

Tom Oswald | EurekAlert!
Further information:

Further reports about: MSU hyenas prey survival

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>