Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regular walking protects the Masai against cardiovascular disease

18.07.2008
Euroscience Open Forum

Scientists have long been puzzled by how the Masai can avoid cardiovascular disease despite having a diet rich in animal fats. Researchers at Karolinska Institutet believe that their secret is in their regular walking.

There is strong evidence that the high consumption of animal fats increases the risk of developing cardiovascular disease. Many scientists have therefore been surprised that the nomadic Masai of Kenya and Tanzania are seldom afflicted by the disease, despite having a diet that is rich in animal fats and deficient in carbohydrates.

This fact, which has been known to scientists for 40 years, has raised speculations that the Masai are genetically protected from cardiovascular disease. Now, a unique study by Dr Julia Mbalilaki in association with colleagues from Norway and Tanzania, suggests that the reason is more likely to be the Masai’s active lifestyle.

... more about:
»Cardiovascular »DIET »Disease »Masai

Their results are based on examinations of the lifestyles, diets and cardiovascular risk factors of 985 middle-aged men and women in Tanzania, 130 of who were Masai, 371 farmers and 484 urbanites. In line with previous studies, their results show that the Masai not only have a diet richer in animal fat than that of the other subjects, but also run the lowest cardiovascular risk, which is to say that they have the lowest body weights, waist-measurements and blood pressure, combined with a healthy blood lipid profile.

What sets the Masai lifestyle apart is also a very high degree of physical activity. The Masai studied expended 2,500 kilocalories a day more than the basic requirement, compared with 1,500 kilocalories a day for the farmers and 891 kilocalories a day for the urbanites. According to the team, most Westerners would have to walk roughly 20 km a day to achieve the Masai level of energy expenditure.

The scientists believe that the Masai are protected by their high physical activity rather than by some unknown genetic factor.

“This is the first time that cardiovascular risk factors have been fully studied in the Masai,” says Dr Mbalilaki. “Bearing in mind the vast amount of walking they do, it no longer seems strange that the Masai have low waist-measurements and good blood lipid profiles, despite the levels of animal fat in their food.”

Publication: ‘Daily energy expenditure and cardiovascular risk in Masai, rural and

urban Bantu Tanzanians’, Julia Aneth Mbalilaki, Zablon Masesa, Sigmund Bjarne Strømme, Arne Torbjørn Høstmark, Jan Sundquist, Per Wändell, Annika Rosengren and Mai-Lis Hellenius, British Journal of Sports Medicine, online 3 June 2008, doi:10.1136/bjsm.2007.044966

Katarina Sternudd | alfa
Further information:
http://bjsm.bmj.com/
http://ki.se

Further reports about: Cardiovascular DIET Disease Masai

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>