Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


What do analytical chemicals do?

Researchers from Rey Juan Carlos University and the University of Alcalá are developing analytical methodologies to quickly and efficiently evaluate asymmetric epoxidation processes of allyl alcohols.

Several industries, from pharmaceutical and chemical to food and others, require enantiomerically pure compounds for the development of their products. Enantiomers are non superposing specular images of a compound that has chiral properties. Many drugs contain chiral active compounds and in some cases, depending on the particular enantiomer used, the therapeutic effect may vary greatly.

This is the reason it is so important today to develop methods to produce enatiomers in a pure form; and also explains why the asymmetric synthesis procedures that produce only the desired enantiomer by means of a catalyst are now the focus of many investigations. Nevertheless, the great surge in development of this type of processes requires the parallel development of new analytical methods capable of evaluating the results obtained based on yield and enantiometric excess.

In 2001, the American chemist K.B. Sharpless was awarded the noble prize in chemistry for the development of a highly enantioselective process to obtain chiral epoxides from allyl alcohols using chiral titanium tartrate. This process is of great significance, since epoxides are widely used in organic synthesis processes as they are useful and versatile molecules that can suffer a large number of transformations due to their high reactivity. Examples can be found in ß-blockers, like Propranolol and for the synthesis of hepatitis B virus inhibitors.

... more about:
»Chiral »analytical »methods

The importance of these compounds and the constant research for new catalytic systems justify the need for the development of analytical methods that allow a simple, quick and efficient evaluation of these processes. For this reason, a research group at the Department of Inorganic and Analytical Chemistry at the Rey Juan Carlos University formed by the Doctors. S. Morante-Zarcero, I. del Hierro, M. Fajardo & I. Sierra, has developed and validated different analytical methods for the determination of such compounds by means of high efficiency liquid chromatography with ultraviolet detection and mass spectrometry (HPLC-DAD and HPLC-MS). Furthermore, in the last few years capillary electrophoresis (CE) has proved its great potential to carry out chiral separations. Thanks to its high efficiency, low reactive consumption and versatility, Professor. Mª Luisa Marina, in collaboration with Dr. Antonio Crego from the Department of Analytical Chemistry at the Alcalá University, applied this technique to develop the first methods using CE to determine chiral epoxides in this type of samples.

All the methodologies that were developed, and that have proven to have good characterising attributes, like linearity, precision, selectivity, detection limit, and quantification, have been used to successfully evaluate asymmetric epoxidation processes of allyl alcohols, using new chiral catalyst compounds based on titanium and have been published in analytical chemistry magazines such as the Journal of Chromatography A, Analytica Chimica Acta and Electrophoresis.

Oficina Información Científica | alfa
Further information:

Further reports about: Chiral analytical methods

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>