Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What do analytical chemicals do?

18.07.2008
Researchers from Rey Juan Carlos University and the University of Alcalá are developing analytical methodologies to quickly and efficiently evaluate asymmetric epoxidation processes of allyl alcohols.

Several industries, from pharmaceutical and chemical to food and others, require enantiomerically pure compounds for the development of their products. Enantiomers are non superposing specular images of a compound that has chiral properties. Many drugs contain chiral active compounds and in some cases, depending on the particular enantiomer used, the therapeutic effect may vary greatly.

This is the reason it is so important today to develop methods to produce enatiomers in a pure form; and also explains why the asymmetric synthesis procedures that produce only the desired enantiomer by means of a catalyst are now the focus of many investigations. Nevertheless, the great surge in development of this type of processes requires the parallel development of new analytical methods capable of evaluating the results obtained based on yield and enantiometric excess.

In 2001, the American chemist K.B. Sharpless was awarded the noble prize in chemistry for the development of a highly enantioselective process to obtain chiral epoxides from allyl alcohols using chiral titanium tartrate. This process is of great significance, since epoxides are widely used in organic synthesis processes as they are useful and versatile molecules that can suffer a large number of transformations due to their high reactivity. Examples can be found in ß-blockers, like Propranolol and for the synthesis of hepatitis B virus inhibitors.

... more about:
»Chiral »analytical »methods

The importance of these compounds and the constant research for new catalytic systems justify the need for the development of analytical methods that allow a simple, quick and efficient evaluation of these processes. For this reason, a research group at the Department of Inorganic and Analytical Chemistry at the Rey Juan Carlos University formed by the Doctors. S. Morante-Zarcero, I. del Hierro, M. Fajardo & I. Sierra, has developed and validated different analytical methods for the determination of such compounds by means of high efficiency liquid chromatography with ultraviolet detection and mass spectrometry (HPLC-DAD and HPLC-MS). Furthermore, in the last few years capillary electrophoresis (CE) has proved its great potential to carry out chiral separations. Thanks to its high efficiency, low reactive consumption and versatility, Professor. Mª Luisa Marina, in collaboration with Dr. Antonio Crego from the Department of Analytical Chemistry at the Alcalá University, applied this technique to develop the first methods using CE to determine chiral epoxides in this type of samples.

All the methodologies that were developed, and that have proven to have good characterising attributes, like linearity, precision, selectivity, detection limit, and quantification, have been used to successfully evaluate asymmetric epoxidation processes of allyl alcohols, using new chiral catalyst compounds based on titanium and have been published in analytical chemistry magazines such as the Journal of Chromatography A, Analytica Chimica Acta and Electrophoresis.

Oficina Información Científica | alfa
Further information:
http://www.madrimasd.org

Further reports about: Chiral analytical methods

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>