Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What do analytical chemicals do?

18.07.2008
Researchers from Rey Juan Carlos University and the University of Alcalá are developing analytical methodologies to quickly and efficiently evaluate asymmetric epoxidation processes of allyl alcohols.

Several industries, from pharmaceutical and chemical to food and others, require enantiomerically pure compounds for the development of their products. Enantiomers are non superposing specular images of a compound that has chiral properties. Many drugs contain chiral active compounds and in some cases, depending on the particular enantiomer used, the therapeutic effect may vary greatly.

This is the reason it is so important today to develop methods to produce enatiomers in a pure form; and also explains why the asymmetric synthesis procedures that produce only the desired enantiomer by means of a catalyst are now the focus of many investigations. Nevertheless, the great surge in development of this type of processes requires the parallel development of new analytical methods capable of evaluating the results obtained based on yield and enantiometric excess.

In 2001, the American chemist K.B. Sharpless was awarded the noble prize in chemistry for the development of a highly enantioselective process to obtain chiral epoxides from allyl alcohols using chiral titanium tartrate. This process is of great significance, since epoxides are widely used in organic synthesis processes as they are useful and versatile molecules that can suffer a large number of transformations due to their high reactivity. Examples can be found in ß-blockers, like Propranolol and for the synthesis of hepatitis B virus inhibitors.

... more about:
»Chiral »analytical »methods

The importance of these compounds and the constant research for new catalytic systems justify the need for the development of analytical methods that allow a simple, quick and efficient evaluation of these processes. For this reason, a research group at the Department of Inorganic and Analytical Chemistry at the Rey Juan Carlos University formed by the Doctors. S. Morante-Zarcero, I. del Hierro, M. Fajardo & I. Sierra, has developed and validated different analytical methods for the determination of such compounds by means of high efficiency liquid chromatography with ultraviolet detection and mass spectrometry (HPLC-DAD and HPLC-MS). Furthermore, in the last few years capillary electrophoresis (CE) has proved its great potential to carry out chiral separations. Thanks to its high efficiency, low reactive consumption and versatility, Professor. Mª Luisa Marina, in collaboration with Dr. Antonio Crego from the Department of Analytical Chemistry at the Alcalá University, applied this technique to develop the first methods using CE to determine chiral epoxides in this type of samples.

All the methodologies that were developed, and that have proven to have good characterising attributes, like linearity, precision, selectivity, detection limit, and quantification, have been used to successfully evaluate asymmetric epoxidation processes of allyl alcohols, using new chiral catalyst compounds based on titanium and have been published in analytical chemistry magazines such as the Journal of Chromatography A, Analytica Chimica Acta and Electrophoresis.

Oficina Información Científica | alfa
Further information:
http://www.madrimasd.org

Further reports about: Chiral analytical methods

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>