Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standards in stem cell research

18.07.2008
Standards in stem cell research help both scientists and regulators to manage uncertainty and the unknown, according to new research funded by the Economic and Social Research Council. Efforts to standardise practices across different labs is, however, a balancing act where the autonomy of scientists and fragility of living material need to be weighed against the need for comparable data.

The ambition in many quarters to scale up the production of human embryonic stem cells and move towards clinical trials requires that different laboratories are able to produce to a standard quality of cells. Developing common standards in stem cell production is not straightforward as so much is still unknown in this new science. Professor Andrew Webster and Dr Lena Eriksson of York University interviewed and observed a range of scientists and technicians working in stem cell laboratories in the UK, USA and Sweden.

Accurately describing human embryonic stem cell lines is one way to begin setting standards. A stem cell line is a family of constantly-dividing cells, the product of a single parent group of stem cells. Embryonic stem cells are unique in that they have yet to 'decide' which developmental path to choose: they have the ability to turn into almost all human cell types. However each human embryonic stem cell holds the genetic signature of the donor which differs between donors just as people themselves differ. Further the state of a stem cell is by its very nature temporary as it is defined by its ability to develop into many different cell types.

Some scientists argued that as the stem cell cannot be standardised, the process and materials used should be standardised. Currently differences in laboratory practices are thought to result in differences in stem cell lines reflecting the way they are treated rather than an innate quality of the lines themselves. The skills of the laboratory technician also play a key role. But pinpointing all the factors that contribute to producing successful stem cell lines remains elusive. “Scientists often explain that their laboratory produces successful human embryonic stem cell lines because their laboratory uses the factor X when they grow them or its lab technicians have green fingers,” says Dr Lena Eriksson of the research team.

... more about:
»Embryonic »Stem »embryonic stem

Some researchers prefer not to develop standards as these will constrain the science and may close off promising areas of research. “Others argue that it is simply futile,” explains Lena Eriksson. “Can you standardise how all children sleep by giving them the same bed, sheet and blanket? Of course not. So why bother standardising the materials of stem cell production when other differences such as donor history and derivation methods are so complex, manifold and, to date, largely unknown?”

However, the research shows most stem cell scientists are keen to collaborate on the technical side as they feel this is necessary in order to move the field as a whole forward. The research team followed one particularly successful effort – the International Stem Cell Initiative – that adopted a multi-sited experimental approach in which a large number of stem cell lines were analysed and compared.

Because of the imprecise nature of the manual laboratory work, standardisation opens a potential market for automation technologies to be introduced into human embryonic stem cell laboratories. Yet the research shows this also brings tensions. By attracting businesses keen to become suppliers of laboratory material for this emerging market, the expense of such equipment as well as the skills and staff needed to operate it may exclude small laboratories. Even those that can afford to meet the costs have reservations about the robustness of stem cells to withstand the automation process. The relationship between standards, automation and stem cell quality will be key to the future scale-up of the field and so its clinical application.

Danielle Moore | alfa
Further information:
http://www.esrcsocietytoday.ac.uk
http://www.esrcsocietytoday.ac.uk/ESRCInfoCentre/PO/releases/2008/

Further reports about: Embryonic Stem embryonic stem

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>