Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

California Institute for Regenerative Medicine to fund stem cell research at Cedars-Sinai Heart Institute

17.07.2008
Studies seek stem cell therapies for heart attacks, heart failure and pacing disorders

The California Institute for Regenerative Medicine (CIRM) has awarded a planning grant to the Cedars-Sinai Heart Institute to support its researchers in their study of regenerative stem cell-based approaches to heart attacks, congestive heart failure and pacing abnormalities.

Cedars-Sinai research teams are currently conducting stem cell studies in several disciplines – often using stem cells derived from bone marrow and other sources in the body – but this is the first funding the medical center has received from CIRM, which was established in 2005 to fund stem cell research at California research institutions. The grant is to be applied toward planning and developing upcoming studies.

The grant was awarded to Eduardo Marbán, M.D., Ph.D., a world-renowned stem cell researcher and cardiologist who joined Cedars-Sinai last year as the founding director of its Heart Institute. Building on Cedars-Sinai’s decades-long strengths in cardiology, cardiac surgery and cardiac imaging, the Cedars-Sinai Heart Institute integrates state-of-the-art research in heart disease and prevention with one of the nation’s highest-quality patient-care programs.

In studies scheduled to begin at Cedars-Sinai later this year, autologous (derived from patients themselves) stem cells will be used to treat heart attack and heart failure. Studies in these areas are advanced and are expected to provide clinical results within a few years. The goal is to have stem cells providing healthy new heart cells to replace those damaged by disease.
... more about:
»Cell »Heart »Stem

For the development of “biological pacemakers,” the researchers will be studying whether human embryonic stem cells can be engineered to become heart pacing cells that could be implanted to actually restore a heart’s natural rhythm, even responding to varying demands – something artificial pacemakers can’t do. The complex process of creating biological pacemakers appears feasible in laboratory work but needs to progress through years of development and preclinical trials before being approved for human studies.

Sandy Van | prpacific.com
Further information:
http://www.cedars-sinai.edu

Further reports about: Cell Heart Stem

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>