Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


California Institute for Regenerative Medicine to fund stem cell research at Cedars-Sinai Heart Institute

Studies seek stem cell therapies for heart attacks, heart failure and pacing disorders

The California Institute for Regenerative Medicine (CIRM) has awarded a planning grant to the Cedars-Sinai Heart Institute to support its researchers in their study of regenerative stem cell-based approaches to heart attacks, congestive heart failure and pacing abnormalities.

Cedars-Sinai research teams are currently conducting stem cell studies in several disciplines – often using stem cells derived from bone marrow and other sources in the body – but this is the first funding the medical center has received from CIRM, which was established in 2005 to fund stem cell research at California research institutions. The grant is to be applied toward planning and developing upcoming studies.

The grant was awarded to Eduardo Marbán, M.D., Ph.D., a world-renowned stem cell researcher and cardiologist who joined Cedars-Sinai last year as the founding director of its Heart Institute. Building on Cedars-Sinai’s decades-long strengths in cardiology, cardiac surgery and cardiac imaging, the Cedars-Sinai Heart Institute integrates state-of-the-art research in heart disease and prevention with one of the nation’s highest-quality patient-care programs.

In studies scheduled to begin at Cedars-Sinai later this year, autologous (derived from patients themselves) stem cells will be used to treat heart attack and heart failure. Studies in these areas are advanced and are expected to provide clinical results within a few years. The goal is to have stem cells providing healthy new heart cells to replace those damaged by disease.
... more about:
»Cell »Heart »Stem

For the development of “biological pacemakers,” the researchers will be studying whether human embryonic stem cells can be engineered to become heart pacing cells that could be implanted to actually restore a heart’s natural rhythm, even responding to varying demands – something artificial pacemakers can’t do. The complex process of creating biological pacemakers appears feasible in laboratory work but needs to progress through years of development and preclinical trials before being approved for human studies.

Sandy Van |
Further information:

Further reports about: Cell Heart Stem

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>