Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fuel from food waste: bacteria provide power

Researchers have combined the efforts of two kinds of bacteria to produce hydrogen in a bioreactor, with the product from one providing food for the other.

According to an article in the August issue of Microbiology Today, this technology has an added bonus: leftover enzymes can be used to scavenge precious metals from spent automotive catalysts to help make fuel cells that convert hydrogen into energy.

Hydrogen has three times more potential energy by weight than petrol, making it the highest energy-content fuel available. Research into using bacteria to produce hydrogen has been revived thanks to the rising profile of energy issues.

We throw away a third of our food in the UK, wasting 7 million tonnes a year. The majority of this is currently sent to landfill where it produces gases like methane, which is a greenhouse gas 25 more potent than carbon dioxide. Following some major advances in the technology used to make "biohydrogen", this waste can now be turned into valuable energy.

... more about:
»Energy »Hydrogen »Waste »bacteria

"There are special and yet prevalent circumstances under which micro-organisms have no better way of gaining energy than to release hydrogen into their environment," said Dr Mark Redwood from the University of Birmingham. "Microbes such as heterotrophs, cyanobacteria, microalgae and purple bacteria all produce biohydrogen in different ways."

When there is no oxygen, fermentative bacteria use carbohydrates like sugar to produce hydrogen and acids. Others, like purple bacteria, use light to produce energy (photosynthesis) and make hydrogen to help them break down molecules such as acids. These two reactions fit together as the purple bacteria can use the acids produced by the fermentation bacteria. Professor Lynne Macaskie's Unit of Functional Bionanomaterials at the University of Birmingham has created two bioreactors that provide the ideal conditions for these two types of bacteria to produce hydrogen.

"By working together the two types of bacteria can produce much more hydrogen than either could alone," said Dr Mark Redwood. "A significant challenge for the development of this process to a productive scale is to design a kind of photobioreactor that is cheap to construct and able to harvest light from a large area. A second issue is connecting the process with a reliable supply of sugary feedstock."

With a more advanced pre-treatment, biohydrogen can even be produced from the waste from food-crop cultivation, such as corn stalks and husks. Tens of millions of tonnes of this waste is produced every year in the UK. Diverting it from landfill into biohydrogen production addresses both climate change and energy security.

The University of Birmingham has teamed up with Modern Waste Ltd and EKB Technology Ltd to form Biowaste2energy Ltd, which will develop and commercialise this waste to energy technology.

"In a final twist, the hydrogenase enzymes in the leftover bacteria can be used to scavenge precious metals from spent automotive catalysts to help make fuel cell that converts hydrogen into electricity," said Professor Lynne Macaskie. "So nothing is wasted and an important new application can be found for today's waste mountain in tomorrow's non-fossil fuel transport and energy."

Lucy Goodchild | alfa
Further information:

Further reports about: Energy Hydrogen Waste bacteria

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>