Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel from food waste: bacteria provide power

17.07.2008
Researchers have combined the efforts of two kinds of bacteria to produce hydrogen in a bioreactor, with the product from one providing food for the other.

According to an article in the August issue of Microbiology Today, this technology has an added bonus: leftover enzymes can be used to scavenge precious metals from spent automotive catalysts to help make fuel cells that convert hydrogen into energy.

Hydrogen has three times more potential energy by weight than petrol, making it the highest energy-content fuel available. Research into using bacteria to produce hydrogen has been revived thanks to the rising profile of energy issues.

We throw away a third of our food in the UK, wasting 7 million tonnes a year. The majority of this is currently sent to landfill where it produces gases like methane, which is a greenhouse gas 25 more potent than carbon dioxide. Following some major advances in the technology used to make "biohydrogen", this waste can now be turned into valuable energy.

... more about:
»Energy »Hydrogen »Waste »bacteria

"There are special and yet prevalent circumstances under which micro-organisms have no better way of gaining energy than to release hydrogen into their environment," said Dr Mark Redwood from the University of Birmingham. "Microbes such as heterotrophs, cyanobacteria, microalgae and purple bacteria all produce biohydrogen in different ways."

When there is no oxygen, fermentative bacteria use carbohydrates like sugar to produce hydrogen and acids. Others, like purple bacteria, use light to produce energy (photosynthesis) and make hydrogen to help them break down molecules such as acids. These two reactions fit together as the purple bacteria can use the acids produced by the fermentation bacteria. Professor Lynne Macaskie's Unit of Functional Bionanomaterials at the University of Birmingham has created two bioreactors that provide the ideal conditions for these two types of bacteria to produce hydrogen.

"By working together the two types of bacteria can produce much more hydrogen than either could alone," said Dr Mark Redwood. "A significant challenge for the development of this process to a productive scale is to design a kind of photobioreactor that is cheap to construct and able to harvest light from a large area. A second issue is connecting the process with a reliable supply of sugary feedstock."

With a more advanced pre-treatment, biohydrogen can even be produced from the waste from food-crop cultivation, such as corn stalks and husks. Tens of millions of tonnes of this waste is produced every year in the UK. Diverting it from landfill into biohydrogen production addresses both climate change and energy security.

The University of Birmingham has teamed up with Modern Waste Ltd and EKB Technology Ltd to form Biowaste2energy Ltd, which will develop and commercialise this waste to energy technology.

"In a final twist, the hydrogenase enzymes in the leftover bacteria can be used to scavenge precious metals from spent automotive catalysts to help make fuel cell that converts hydrogen into electricity," said Professor Lynne Macaskie. "So nothing is wasted and an important new application can be found for today's waste mountain in tomorrow's non-fossil fuel transport and energy."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

Further reports about: Energy Hydrogen Waste bacteria

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>