Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel from food waste: bacteria provide power

17.07.2008
Researchers have combined the efforts of two kinds of bacteria to produce hydrogen in a bioreactor, with the product from one providing food for the other.

According to an article in the August issue of Microbiology Today, this technology has an added bonus: leftover enzymes can be used to scavenge precious metals from spent automotive catalysts to help make fuel cells that convert hydrogen into energy.

Hydrogen has three times more potential energy by weight than petrol, making it the highest energy-content fuel available. Research into using bacteria to produce hydrogen has been revived thanks to the rising profile of energy issues.

We throw away a third of our food in the UK, wasting 7 million tonnes a year. The majority of this is currently sent to landfill where it produces gases like methane, which is a greenhouse gas 25 more potent than carbon dioxide. Following some major advances in the technology used to make "biohydrogen", this waste can now be turned into valuable energy.

... more about:
»Energy »Hydrogen »Waste »bacteria

"There are special and yet prevalent circumstances under which micro-organisms have no better way of gaining energy than to release hydrogen into their environment," said Dr Mark Redwood from the University of Birmingham. "Microbes such as heterotrophs, cyanobacteria, microalgae and purple bacteria all produce biohydrogen in different ways."

When there is no oxygen, fermentative bacteria use carbohydrates like sugar to produce hydrogen and acids. Others, like purple bacteria, use light to produce energy (photosynthesis) and make hydrogen to help them break down molecules such as acids. These two reactions fit together as the purple bacteria can use the acids produced by the fermentation bacteria. Professor Lynne Macaskie's Unit of Functional Bionanomaterials at the University of Birmingham has created two bioreactors that provide the ideal conditions for these two types of bacteria to produce hydrogen.

"By working together the two types of bacteria can produce much more hydrogen than either could alone," said Dr Mark Redwood. "A significant challenge for the development of this process to a productive scale is to design a kind of photobioreactor that is cheap to construct and able to harvest light from a large area. A second issue is connecting the process with a reliable supply of sugary feedstock."

With a more advanced pre-treatment, biohydrogen can even be produced from the waste from food-crop cultivation, such as corn stalks and husks. Tens of millions of tonnes of this waste is produced every year in the UK. Diverting it from landfill into biohydrogen production addresses both climate change and energy security.

The University of Birmingham has teamed up with Modern Waste Ltd and EKB Technology Ltd to form Biowaste2energy Ltd, which will develop and commercialise this waste to energy technology.

"In a final twist, the hydrogenase enzymes in the leftover bacteria can be used to scavenge precious metals from spent automotive catalysts to help make fuel cell that converts hydrogen into electricity," said Professor Lynne Macaskie. "So nothing is wasted and an important new application can be found for today's waste mountain in tomorrow's non-fossil fuel transport and energy."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

Further reports about: Energy Hydrogen Waste bacteria

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>