Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How birds spot the cuckoo in the nest

16.07.2008
It's not always easy spotting the cuckoo in the nest. But if you don't, you pay a high price raising someone else's chick. How hosts distinguish impostor eggs from their own has long puzzled scientists.

The problem remained largely unsolved while looking at it through our own eyes. It was only when people started thinking from the birds' perspective that they began to understand how hosts recognise a cuckoo egg in the nest.

Marcel Honza from the Academy of Sciences of the Czech Republic explains that birds see UV wavelengths that are well outside our own visual range. Knowing that many bird eggs reflect UV wavelengths, Honza wondered whether altering the reflected UV spectrum of an egg would affect a bird's ability to recognise it as foreign and reject it.

Would a blackcap recognise and evict an impostor egg if the reflected UV spectrum were different from the wavelengths reflected by the bird's own clutch? Teaming up with Lenka Polaèiková, Honza headed into a near-by forest to test blackcap responses to impostor eggs and publish their findings on July 18th in The Journal of Experimental Biology at http://jeb.biologists.org.

... more about:
»Honza »NEST »appearance »blackcap »cuckoo »reflectivity

But instead of testing the birds' reactions to real cuckoo eggs, the team found abandoned blackcap eggs, introducing them as impostors to successful blackcap clutches. Having identified nests with well-established clutches, the team coated some impostor eggs in UV blocker, to alter their UV appearance, and others in Vaseline, which didn't alter the egg's UV reflectivity, before planting the impostors in their new nest. Then the team kept their fingers crossed, hoping that the nests weren't washed out by a heavy downpour or raided by a hungry predator, as they waited 5 days to see if the parents rejected the interlopers.

Of the 16 eggs coated in Vaseline, 11 of the impostors were accepted by the nesting parents, while five were rejected; most of the interloper blackcap eggs were visually indistinguishable from the nesting parents' own eggs and were accepted as belonging to the brood. However, it was a different matter for the birds sitting on UV-block-coated impostors. Seventeen brooding parents evicted the strange looking egg, pecking at the shell until they had made a large enough hole to stick their beak in and carry it away. Only 11 blackcaps accepted the interloper with its altered appearance.

The UV appearance of the eggs was very important in enabling the blackcaps to recognise the new eggs as impostors. The blackcaps rejected far more eggs when Polaèiková and Honza covered them in UV block. By altering the eggs' UV reflectivity the team had made them stand out from the crowd.

Honza admits that he was surprised that the UV reflectivity had such a significant effect on the blackcap's ability to reject an impostor. Having found that an interloper's UV appearance is key to its acceptance in a clutch, Honza is keen to see whether cuckoos try to outsmart their victims by choosing clutches that closely match their own eggs' UV reflectivity.

Kathryn Phillips | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

Further reports about: Honza NEST appearance blackcap cuckoo reflectivity

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>