Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How birds spot the cuckoo in the nest

It's not always easy spotting the cuckoo in the nest. But if you don't, you pay a high price raising someone else's chick. How hosts distinguish impostor eggs from their own has long puzzled scientists.

The problem remained largely unsolved while looking at it through our own eyes. It was only when people started thinking from the birds' perspective that they began to understand how hosts recognise a cuckoo egg in the nest.

Marcel Honza from the Academy of Sciences of the Czech Republic explains that birds see UV wavelengths that are well outside our own visual range. Knowing that many bird eggs reflect UV wavelengths, Honza wondered whether altering the reflected UV spectrum of an egg would affect a bird's ability to recognise it as foreign and reject it.

Would a blackcap recognise and evict an impostor egg if the reflected UV spectrum were different from the wavelengths reflected by the bird's own clutch? Teaming up with Lenka Polaèiková, Honza headed into a near-by forest to test blackcap responses to impostor eggs and publish their findings on July 18th in The Journal of Experimental Biology at

... more about:
»Honza »NEST »appearance »blackcap »cuckoo »reflectivity

But instead of testing the birds' reactions to real cuckoo eggs, the team found abandoned blackcap eggs, introducing them as impostors to successful blackcap clutches. Having identified nests with well-established clutches, the team coated some impostor eggs in UV blocker, to alter their UV appearance, and others in Vaseline, which didn't alter the egg's UV reflectivity, before planting the impostors in their new nest. Then the team kept their fingers crossed, hoping that the nests weren't washed out by a heavy downpour or raided by a hungry predator, as they waited 5 days to see if the parents rejected the interlopers.

Of the 16 eggs coated in Vaseline, 11 of the impostors were accepted by the nesting parents, while five were rejected; most of the interloper blackcap eggs were visually indistinguishable from the nesting parents' own eggs and were accepted as belonging to the brood. However, it was a different matter for the birds sitting on UV-block-coated impostors. Seventeen brooding parents evicted the strange looking egg, pecking at the shell until they had made a large enough hole to stick their beak in and carry it away. Only 11 blackcaps accepted the interloper with its altered appearance.

The UV appearance of the eggs was very important in enabling the blackcaps to recognise the new eggs as impostors. The blackcaps rejected far more eggs when Polaèiková and Honza covered them in UV block. By altering the eggs' UV reflectivity the team had made them stand out from the crowd.

Honza admits that he was surprised that the UV reflectivity had such a significant effect on the blackcap's ability to reject an impostor. Having found that an interloper's UV appearance is key to its acceptance in a clutch, Honza is keen to see whether cuckoos try to outsmart their victims by choosing clutches that closely match their own eggs' UV reflectivity.

Kathryn Phillips | EurekAlert!
Further information:

Further reports about: Honza NEST appearance blackcap cuckoo reflectivity

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>