Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor-inhibiting protein could be effective in treating leukemia

16.07.2008
Angiocidin also shown to stimulate the body's immune system

Angiocidin, a tumor-inhibiting novel protein discovered by Temple University researchers, may also have a role as a new therapeutic application in treating leukemia, according to a study by the researchers.

The study, "The Novel Angiogenic Inhibitor, Angiocidin, Induces Differentiation of Monocytes to Macropahges," will be published in the July 15 issue of the journal Cancer Research (http://cancerres.aacrjournals.org/future/68.14.shtml). The research was done by Temple biology doctoral student Anita Gaurnier-Hausser under the direction of George Tuszynski, a professor of neuroscience in Temple's School of Medicine and a professor of biology in Temple's College of Science and Technology.

"Angiocidin is a protein that has a lot of anti-cancer activity and inhibits angiogenesis, a physiological process involving the growth of new blood vessels from pre-existing vessels, which is a fundamental step in the transition of tumors from a dormant state to a malignant state," said Tuszynski, who discovered the protein.

Tuszynski said that over the years, the researchers had looked at the protein's effect on solid tumors like breast cancer, prostate cancer and colon cancer.

"All of these cancers are inhibited by Angiocidin by virtue of the fact that this protein inhibits vascularization or the formation of new vessels," he said. "We decided we wanted to look to see if Angiocidin had any effect on hematologic malignancy, and we chose leukemia."

Tuszynski said leukemia cells arise from monocytes, a specific white blood cell that is a part of the human body's immune system that protects against bloodborne pathogens and moves quickly to sites of infection. As monocytes enter tissue, they undergo a series of changes to become macrophages.

When the researchers treated the leukemia cells, "our molecule was able to induce a differentiation of these monocytic leukemia cells into a normal, macrophage-like phenotype," he said.

"This indicates perhaps a new therapeutic application for this protein, that it could differentiate hematologic malignancies into a normal-like state, allowing then for chemotherapy because normal cells are susceptible to chemotherapy treatment," said Tuszynski, who is also a member of the Sol Sherry Thrombosis Research Center in Temple's School of Medicine.

He added, however, that Angiocidin must remain present with the differentiated cells or they will revert back to their leukemia phenotype. "We haven't repaired the genetic abnormality in the cell, but what we have done is push them into a more normal phenotype that could then be treated more easily."

Tuszynski also said that the research demonstrates the ability of Angiocidin to stimulate the body's immune system by differentiating monocytic cells into macrophages, which function to ingest bacteria and protein debris as part of the immune system.

"We did gene array analysis of the differentiated versus the undifferentiated cells and we discovered that there were many genes characteristic of immune cells that were up-regulated in the differentiated leukemia cells," he said. "That Angiocidin can stimulate differentiation and stimulate the immune system is basically a new activity that we discovered with this protein that we had never really anticipated before."

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

Further reports about: Angiocidin Protein immune system leukemia stimulate

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>