Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor-inhibiting protein could be effective in treating leukemia

16.07.2008
Angiocidin also shown to stimulate the body's immune system

Angiocidin, a tumor-inhibiting novel protein discovered by Temple University researchers, may also have a role as a new therapeutic application in treating leukemia, according to a study by the researchers.

The study, "The Novel Angiogenic Inhibitor, Angiocidin, Induces Differentiation of Monocytes to Macropahges," will be published in the July 15 issue of the journal Cancer Research (http://cancerres.aacrjournals.org/future/68.14.shtml). The research was done by Temple biology doctoral student Anita Gaurnier-Hausser under the direction of George Tuszynski, a professor of neuroscience in Temple's School of Medicine and a professor of biology in Temple's College of Science and Technology.

"Angiocidin is a protein that has a lot of anti-cancer activity and inhibits angiogenesis, a physiological process involving the growth of new blood vessels from pre-existing vessels, which is a fundamental step in the transition of tumors from a dormant state to a malignant state," said Tuszynski, who discovered the protein.

Tuszynski said that over the years, the researchers had looked at the protein's effect on solid tumors like breast cancer, prostate cancer and colon cancer.

"All of these cancers are inhibited by Angiocidin by virtue of the fact that this protein inhibits vascularization or the formation of new vessels," he said. "We decided we wanted to look to see if Angiocidin had any effect on hematologic malignancy, and we chose leukemia."

Tuszynski said leukemia cells arise from monocytes, a specific white blood cell that is a part of the human body's immune system that protects against bloodborne pathogens and moves quickly to sites of infection. As monocytes enter tissue, they undergo a series of changes to become macrophages.

When the researchers treated the leukemia cells, "our molecule was able to induce a differentiation of these monocytic leukemia cells into a normal, macrophage-like phenotype," he said.

"This indicates perhaps a new therapeutic application for this protein, that it could differentiate hematologic malignancies into a normal-like state, allowing then for chemotherapy because normal cells are susceptible to chemotherapy treatment," said Tuszynski, who is also a member of the Sol Sherry Thrombosis Research Center in Temple's School of Medicine.

He added, however, that Angiocidin must remain present with the differentiated cells or they will revert back to their leukemia phenotype. "We haven't repaired the genetic abnormality in the cell, but what we have done is push them into a more normal phenotype that could then be treated more easily."

Tuszynski also said that the research demonstrates the ability of Angiocidin to stimulate the body's immune system by differentiating monocytic cells into macrophages, which function to ingest bacteria and protein debris as part of the immune system.

"We did gene array analysis of the differentiated versus the undifferentiated cells and we discovered that there were many genes characteristic of immune cells that were up-regulated in the differentiated leukemia cells," he said. "That Angiocidin can stimulate differentiation and stimulate the immune system is basically a new activity that we discovered with this protein that we had never really anticipated before."

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

Further reports about: Angiocidin Protein immune system leukemia stimulate

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>