Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor-inhibiting protein could be effective in treating leukemia

16.07.2008
Angiocidin also shown to stimulate the body's immune system

Angiocidin, a tumor-inhibiting novel protein discovered by Temple University researchers, may also have a role as a new therapeutic application in treating leukemia, according to a study by the researchers.

The study, "The Novel Angiogenic Inhibitor, Angiocidin, Induces Differentiation of Monocytes to Macropahges," will be published in the July 15 issue of the journal Cancer Research (http://cancerres.aacrjournals.org/future/68.14.shtml). The research was done by Temple biology doctoral student Anita Gaurnier-Hausser under the direction of George Tuszynski, a professor of neuroscience in Temple's School of Medicine and a professor of biology in Temple's College of Science and Technology.

"Angiocidin is a protein that has a lot of anti-cancer activity and inhibits angiogenesis, a physiological process involving the growth of new blood vessels from pre-existing vessels, which is a fundamental step in the transition of tumors from a dormant state to a malignant state," said Tuszynski, who discovered the protein.

Tuszynski said that over the years, the researchers had looked at the protein's effect on solid tumors like breast cancer, prostate cancer and colon cancer.

"All of these cancers are inhibited by Angiocidin by virtue of the fact that this protein inhibits vascularization or the formation of new vessels," he said. "We decided we wanted to look to see if Angiocidin had any effect on hematologic malignancy, and we chose leukemia."

Tuszynski said leukemia cells arise from monocytes, a specific white blood cell that is a part of the human body's immune system that protects against bloodborne pathogens and moves quickly to sites of infection. As monocytes enter tissue, they undergo a series of changes to become macrophages.

When the researchers treated the leukemia cells, "our molecule was able to induce a differentiation of these monocytic leukemia cells into a normal, macrophage-like phenotype," he said.

"This indicates perhaps a new therapeutic application for this protein, that it could differentiate hematologic malignancies into a normal-like state, allowing then for chemotherapy because normal cells are susceptible to chemotherapy treatment," said Tuszynski, who is also a member of the Sol Sherry Thrombosis Research Center in Temple's School of Medicine.

He added, however, that Angiocidin must remain present with the differentiated cells or they will revert back to their leukemia phenotype. "We haven't repaired the genetic abnormality in the cell, but what we have done is push them into a more normal phenotype that could then be treated more easily."

Tuszynski also said that the research demonstrates the ability of Angiocidin to stimulate the body's immune system by differentiating monocytic cells into macrophages, which function to ingest bacteria and protein debris as part of the immune system.

"We did gene array analysis of the differentiated versus the undifferentiated cells and we discovered that there were many genes characteristic of immune cells that were up-regulated in the differentiated leukemia cells," he said. "That Angiocidin can stimulate differentiation and stimulate the immune system is basically a new activity that we discovered with this protein that we had never really anticipated before."

Preston M. Moretz | EurekAlert!
Further information:
http://www.temple.edu

Further reports about: Angiocidin Protein immune system leukemia stimulate

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>