Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover key patterns in the packaging of genes

15.07.2008
An effort to detect patterns of chemical changes in histones and their impact on gene expression

Although every cell of our bodies contains the same genetic instructions, specific genes typically act only in specific cells at particular times. Other genes are "silenced" in a variety of ways. One mode of gene silencing depends upon the way DNA, the genetic material, is packed in the nucleus of cells.

When packed very tightly around complexes of proteins called histones, the DNA double helix is rendered physically inaccessible to molecules that mediate gene expression. Now, a research team that includes Michael Q. Zhang, Ph.D., a professor at Cold Spring Harbor Laboratory (CSHL), has published a comprehensive analysis of modification patterns in histones.

Using a new technology called ChIP-Seq, the team identified 39 histone modifications, including a "core set" of 17 modifications that tended to occur together and were associated with genes observed to be active.

... more about:
»Cell »DNA »Histone »Zhang »activity

Modification Patterns With Different "Personalities"

Scientists have long known that chemical changes at particular locations in histone complexes influence how tightly the DNA is wrapped around the histones. "But it is important to know whether particular modifications occur together in characteristic patterns, or if these patterns can predict gene activities," Dr. Zhang explained.

At the heart of the team's efforts to determine this, Keji Zhao, Ph.D., of the National Heart, Blood, and Lung Institute of the National Institutes of Health, and his colleagues developed a method to map modifications in human white blood cells known as CD4+ T cells. First they used an enzyme to cut the DNA into short segments, which remained attached to histone "spools." For each of 39 distinct histone modifications, the scientists used an antibody to extract matching histone-DNA combinations. Finally, they used the ChIP-Seq DNA-sequencing technology to determine which parts of the genome were bound to each type of modified histone.

The team's most recent research, published in the July 2008 issue of Nature Genetics, maps the DNA locations that bind to histones containing molecular configurations called acetyl groups at 18 different positions in the "tails" of the histone proteins. The scientists combined this information with earlier maps for 19 different changes called methylation modifications, and for replacement of one of the histone proteins with a well-known variant.

The various modifications showed distinctive "personalities," each preferentially associating with particular regulatory regions of genes.

Looking for Patterns

Mapping many modifications enabled the researchers to explore whether different types tend to appear together in the same type of DNA regulatory regions. They found that some recurring combinations did occur frequently at "promoter" and "enhancer" regions in DNA, which are known to increase the activity of nearby genes. In particular, the team identified one combination of 17 modifications that was present in more than a quarter of the more than 12,000 promoter regions they examined.

On average, the genes corresponding to this "backbone" set were expressed more actively. That is to say, they were activated, setting the cellular machinery in motion to produce specific proteins, the workhorses of most life processes.

The rich relationships detected by the researchers among the various histone modifications suggests that specific combinations might carry specific meanings. Previous researchers have proposed a "histone code" hypothesis, which posits that a particular combination of modifications may be recognized by a particular protein module. Some scientists believe such histone code may determine the activity of a given gene.

But, cautions Dr. Zhang, while there are patterns, like the backbone, that are highly correlated, "none of them has exact predictive value." He maintains "there must be something else" that also affects gene activity.

Since genes with higher or lower expression levels may have the same patterns of modification, and not all active genes share a common pattern, the reality is likely more complex than a universal histone code that predicts exact gene expression level. Nonetheless, the new research provides a rich data source for understanding how specific combinations of histone modifications modulate the effects of many genes, in turn helping to modify activity within and among cells. "Critical future research should focus on finding proteins that target histone modifications to genetic regions with particular sequences," Dr. Zhang emphasized.

Jim Bono | EurekAlert!
Further information:
http://www.cshl.edu
http://www.nature.com/ng/journal/v40/n7/full/ng.154.html

Further reports about: Cell DNA Histone Zhang activity

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>