Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover key patterns in the packaging of genes

An effort to detect patterns of chemical changes in histones and their impact on gene expression

Although every cell of our bodies contains the same genetic instructions, specific genes typically act only in specific cells at particular times. Other genes are "silenced" in a variety of ways. One mode of gene silencing depends upon the way DNA, the genetic material, is packed in the nucleus of cells.

When packed very tightly around complexes of proteins called histones, the DNA double helix is rendered physically inaccessible to molecules that mediate gene expression. Now, a research team that includes Michael Q. Zhang, Ph.D., a professor at Cold Spring Harbor Laboratory (CSHL), has published a comprehensive analysis of modification patterns in histones.

Using a new technology called ChIP-Seq, the team identified 39 histone modifications, including a "core set" of 17 modifications that tended to occur together and were associated with genes observed to be active.

... more about:
»Cell »DNA »Histone »Zhang »activity

Modification Patterns With Different "Personalities"

Scientists have long known that chemical changes at particular locations in histone complexes influence how tightly the DNA is wrapped around the histones. "But it is important to know whether particular modifications occur together in characteristic patterns, or if these patterns can predict gene activities," Dr. Zhang explained.

At the heart of the team's efforts to determine this, Keji Zhao, Ph.D., of the National Heart, Blood, and Lung Institute of the National Institutes of Health, and his colleagues developed a method to map modifications in human white blood cells known as CD4+ T cells. First they used an enzyme to cut the DNA into short segments, which remained attached to histone "spools." For each of 39 distinct histone modifications, the scientists used an antibody to extract matching histone-DNA combinations. Finally, they used the ChIP-Seq DNA-sequencing technology to determine which parts of the genome were bound to each type of modified histone.

The team's most recent research, published in the July 2008 issue of Nature Genetics, maps the DNA locations that bind to histones containing molecular configurations called acetyl groups at 18 different positions in the "tails" of the histone proteins. The scientists combined this information with earlier maps for 19 different changes called methylation modifications, and for replacement of one of the histone proteins with a well-known variant.

The various modifications showed distinctive "personalities," each preferentially associating with particular regulatory regions of genes.

Looking for Patterns

Mapping many modifications enabled the researchers to explore whether different types tend to appear together in the same type of DNA regulatory regions. They found that some recurring combinations did occur frequently at "promoter" and "enhancer" regions in DNA, which are known to increase the activity of nearby genes. In particular, the team identified one combination of 17 modifications that was present in more than a quarter of the more than 12,000 promoter regions they examined.

On average, the genes corresponding to this "backbone" set were expressed more actively. That is to say, they were activated, setting the cellular machinery in motion to produce specific proteins, the workhorses of most life processes.

The rich relationships detected by the researchers among the various histone modifications suggests that specific combinations might carry specific meanings. Previous researchers have proposed a "histone code" hypothesis, which posits that a particular combination of modifications may be recognized by a particular protein module. Some scientists believe such histone code may determine the activity of a given gene.

But, cautions Dr. Zhang, while there are patterns, like the backbone, that are highly correlated, "none of them has exact predictive value." He maintains "there must be something else" that also affects gene activity.

Since genes with higher or lower expression levels may have the same patterns of modification, and not all active genes share a common pattern, the reality is likely more complex than a universal histone code that predicts exact gene expression level. Nonetheless, the new research provides a rich data source for understanding how specific combinations of histone modifications modulate the effects of many genes, in turn helping to modify activity within and among cells. "Critical future research should focus on finding proteins that target histone modifications to genetic regions with particular sequences," Dr. Zhang emphasized.

Jim Bono | EurekAlert!
Further information:

Further reports about: Cell DNA Histone Zhang activity

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>