Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


RNA emerges from DNA's shadow

EUROCORES program RNAQuality holds first conference

RNA, the transporter of genetic information within the cell, has emerged from the shadow of DNA to become one of the hottest research areas of molecular biology, with implications for many diseases as well as understanding of evolution.

But the field is complex, requiring access to the latest equipment and techniques of imaging, gene expression analysis and bioinformatics, as well as cross-pollination between multiple scientific disciplines. This has led to a major European push to bring the field together via a network of overlapping multidisciplinary projects, spearheaded by the European Science Foundation (ESF) with its EUROCORES Programme RNAQuality.

The great potential of the RNA research field to solve a variety of fundamental problems relevant for understanding of life and predicting cures for diseases was unleashed at the RNAQuality Programme's first conference, held in Granada in June 2008. As well as many European groups, the conference was represented by leading pioneers from the US in the field, who welcomed the new initiative as an important collaborative force.

... more about:
»Cell »DNA »Mutation »RNA »RNAQuality

RNA was once considered to be just the faithful messenger taking genetic information from the genome to the ribosome, or protein factory, but that view has been blown away by recent research. It is now known that RNA has additional roles in regulating gene expression and as an important structural component both in the cell nucleus and in the ribosomes. Furthermore, errors in transcribing RNA from DNA are frequent and require a variety of elaborate quality control mechanisms to prevent both mis-regulation of genes, and manufacture of aberrant RNA and protein fragments that clog up the workings of the cell, and that if unchecked can cause a variety of disorders, including cancers.

Delegates at the conference also heard how there is great potential for creating new compounds that manipulate the cell's apparatus for transcribing DNA into RNA to overcome a number of serious disorders caused by deleterious mutations in specific genes, as opposed to problems with the RNA itself. Jacobson also presented one of the most exciting developments, a molecule that overcomes a common deficiency in genes that prevents their being read right up to the end of their sequence during transcription. Jacobson pointed out that there are about 2400 human genetic disorders resulting from mutations that cause genes to be incompletely read, including cystic fibrosis and muscular dystrophy. A drug based on the molecule is now entering trials that could lead to it becoming generally available. Results so far indicate dramatic improvements in both cystic fibrosis and muscular dystrophy sufferers, although it is only suitable for those disorders caused by the presence of a premature stop sign in a gene sequence, as a result of a mutation. It does though highlight the huge therapeutic potential of the research into RNA and its quality control.

Significant progress has been made in different aspects of RNA research over the last decade or more, leading to the current situation where many groups are working on different aspects of the problem. The challenge being met by the ESF's RNAQuality Programme is to bring these groups together, and make Europe a much greater force in the field, according to Jim Anderson, from Marquette University's Department of Biological Sciences in the US.

Another important aspect of RNA research lies in the interaction between DNA transcription, and the physical structure both of the membrane-bound cell nucleus and the genome coiled within it. Genes are transcribed within the nucleus and the resulting RNA molecules then emerge through small holes that are connected to the genome by proteins called nuclear pore complexes. In one of the presentations, Nick Proudfoot from Oxford University in the UK explained how some genes are enhanced by being close to the nuclear pore complex, indicating a close relationship between gene expression and nuclear structure that must have played out through evolutionary history. Another point to emerge from Proudfoot's presentation was how some genes are expressed more efficiently for a different reason, because the section of DNA containing their sequence is coiled locally into a loop, rather than as a branch. Quite simply, this speeds up the transcription process of reading the gene because the enzyme concerned, RNA Polymerase, can just keep on encircling the loop. As Proudfoot explained, this is relevant for quality control as well. "They may afford quality control by "telling" the polymerase it is transcribing a bona fide gene, with a proper beginning and end," said Proudfoot. "Otherwise the polymerase may have initiated erroneously." The existence of a DNA ring makes it easier to identify the sequence corresponding to a gene, and transcribe it correctly.

Angela Michiko Hama | EurekAlert!
Further information:

Further reports about: Cell DNA Mutation RNA RNAQuality

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>