Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Protein’s Path to the “Chamber of Doom”

14.07.2008
Researchers have uncovered a perilous pathway within the cell that rivals any road taken by Indiana Jones or his summer blockbuster companions: a slippery tube that funnels proteins into a “chamber of doom” where they are shredded and recycled into the building blocks of new proteins.

The tube is part of the 26S proteasome, an enzyme that acts as the cell’s protein garbage disposal. As described by researchers from the Technion-Israel Institute of Technology and the University of Texas Health Science Center at San Antonio, the tube is a concentric stack of rings wrapped in molecular motors that speed the proteins toward the proteasome’s slicing and dicing core.

“The life of all proteins in our cells ends within the proteasome chamber of doom,” Technion author Michael Glickman explained. He suggested that the newly-described pathway “should be of interest in applications for diseases in which cells are unable to process degraded or misfolded proteins,” including Alzheimer’s and Parkinson’s disease, some cancers, and age-related conditions such as cataract disease.

The study, published online in June in the journal Nature Structural and Molecular Biology, will help researchers understand the basic biology of the proteasome and “its intrinsic essential function in a myriad of cellular pathways,” said Allen Taylor, who has studied proteasome function extensively as director of the Laboratory for Nutrition and Vision Research at Tufts University.

... more about:
»Glickman »Molecular »proteasome »structure

The 26S proteasome degrades proteins that are marked for destruction with a ubiquitin protein “tag.” The proteasome itself consists of two major structures: a large core structure where the proteins are degraded, and a smaller structure that serves as a kind of entryway where the tagged protein makes its first contact with the proteasome and is unfolded for its journey into the core. The tube described by Glickman and colleagues is part of the smaller structure, and serves a chute between the first contact site and the core.

The researchers used atomic force microscopy to visualize the extremely tiny tube, which Glickman described as two molecular “donuts” stacked on top of each other. The donut holes through which proteins pass is only two nanometers in diameter. (For comparison, the period at the end of this sentence is one million times wider than a nanometer.)

The tube is ringed by a group of energy-producing enzymes called ATPases, which act a motor to drive proteins through the tube. “One may see the entire machine as an external engine wrapping around an inner molecular stent for protein translocation, all situated atop the molecular shredder into which the proteins are fed,” Glickman explained.

It’s a natural design that engineers working on synthetic nanomachines might hope to copy in their own creations, he noted.

The Technion-Israel Institute of Technology is Israel's leading science and technology university. Home to the country’s winners of the Nobel Prize in science, it commands a worldwide reputation for its pioneering work in nanotechnology, computer science, biotechnology, water-resource management, materials engineering, aerospace and medicine. The majority of the founders and managers of Israel's high-tech companies are alumni. Based in New York City, the American Technion Society (ATS) is the leading American organization supporting higher education in Israel, with 22 offices around the country.

Kevin Hattori | Newswise Science News
Further information:
http://www.ats.org

Further reports about: Glickman Molecular proteasome structure

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>