Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Variations Put Youth at Risk for Tobacco Addiction

14.07.2008
Common genetic variations affecting nicotine receptors in the nervous system can significantly increase the chance that European Americans who begin smoking by age 17 will struggle with lifelong nicotine addiction, according to researchers at the University of Utah and their colleagues at University of Wisconsin-Madison.

The study, published in the July 11, 2008 issue of PLoS Genetics, highlights the importance of public health efforts to reduce the number of youth who begin smoking.

These common gene variations, called single nucleotide polymorphisms (SNPs), are changes in a single unit of DNA. Scientists call SNPs that are linked and inherited together a haplotype. The researchers found that one haplotype for the nicotine receptor put European American smokers at greater risk of heavy nicotine dependence as adults, but only if they began daily smoking before the age of 17. A second haplotype actually reduced the risk of adult heavy nicotine dependence for people who began smoking in their youth.

The researchers studied 2,827 long-term European American smokers, recruited in Utah and Wisconsin, and to the National Heart, Lung, and Blood Institute’s Lung Health Study. They assessed the level of nicotine dependence for all smokers, and recorded the age they began daily smoking, the number of years they smoked, and the average number of cigarettes smoked per day. DNA samples were taken from all smokers, and the researchers recorded the occurrence of common SNPs, grouped into four haplotypes, which had been identified earlier in a subset of participants.

... more about:
»Risk »SNP »addiction »dependence »haplotype »nicotine

They found that people who began smoking before the age of 17 and possessed two copies of the high-risk haplotype had from a 1.6-fold to almost 5-fold increase in risk of heavy smoking as an adult. For people who began smoking at age 17 or older, presence of the high-risk haplotype did not significantly influence their risk of later addiction. The high-risk haplotype is common in the three study populations, and European American populations in general, ranging in frequency from 38 percent to 41 percent.

Although the authors caution that different haplotype frequencies would likely be observed in different ethnic populations, Robert Weiss, Ph.D., professor of human genetics at the University of Utah and lead author of the study explains, “We know that people who begin smoking at a young age are more likely to face severe nicotine dependence later in life. This finding suggests that genetic influences expressed during adolescence contribute to the risk of lifetime addiction severity produced from the early onset of tobacco use.”

According to Dr. Nora Volkow, director of the National Institute on Drug Abuse (NIDA), “In recent years we’ve seen an explosion in the understanding of how small genetic variations can impact all aspects of health, including addiction. As we learn more about how both genes and environment play a role in smoking, we will be able to better tailor both prevention and cessation programs to individuals.” The study was funded in part by NIDA and the National Heart, Lung, and Blood Institute (NHLBI), parts of the National Institutes of Health (NIH).

The NIDA-funded 2007 Monitoring the Future Study showed that 7.1% of 8th graders, 14.0% of 10th graders, and 21.6% of 12th graders had used cigarettes at least once in the month prior to being surveyed. Although cigarette use has declined slightly in youth in recent years, just over 3 million young people between the ages of 12 and 17, or 13 percent of those in the United States, still smoke cigarettes.

Chris Nelson | Newswise Science News
Further information:
http://www.utah.edu

Further reports about: Risk SNP addiction dependence haplotype nicotine

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>