Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Population dynamics - Distribution of a species of butterfly predicted using geometric variables

11.07.2008
Biologists have just recently discovered this month the distribution of the butterfly Iolana iolas, one of the endangered species in the Madrid region whose population dynamics are determined by its host plant. The new study, prepared by scientists from the King Juan Carlos University in Madrid, proposes a new path for designing conservation plans for the species using geometric variables.

The research, published in the latest edition of the magazine Oecologia (Ecology), has made it possible to determine the relative importance of the area which the butterfly Iolana iolas inhabits, as well as the connectivity between the different areas of the habitat (at a maximum distance of two kilometres from each other) in a network of 75 patches (population centres) situated in the south of the province of Madrid (Chinchón).

Three researchers from the King Juan Carlos University in Madrid have therefore presented a line of study on the spatial structure and dynamics of the butterfly different to other quality characteristics in the habitat.

The results of the study, prepared between 2003 and 2006, show that in the Iolana iolas and other species of monophagous butterflies (with clearly delimited habitat requirements), it is possible to predict the dynamics of their populations from the geometric variables of patches, “since most of the characteristics of the habitat are related to the patch area”, explained Sonia García Rabasa, the main author of the article, to SINC.

Researchers have concentrated on factors that determine the distribution, extinction and density of Iolana iolas populations in relation to the habitat patches formed by an endemic plant of the Iberian Peninsular, and host to butterflies, the Colutea hispanica (leguminous plant).

“The study may be of major importance for designing conservation plans for the species, and shows the relevance of geometric characteristics compared to other habitat quality properties which are frequently more difficult to achieve in field conditions”, commented the researcher.

To predict the distribution patterns it has also been important to study the synchrony between populations: “The spatial study and population dynamics of butterflies may also affect the incidence and probability of the extinction of the species”, García Rabasa pointed out.

Study of population dynamics

The fragmentation or division of the species’ habitat areas is one of the main causes of the decline of the fauna and flora, as it produces an increase in local extinctions and a reduction in recolonisation rates. Knowing the situation of the Iolana iolas, which depends on plant extension for survival, scientists have shown the effects of the characteristics of the habitat (topographic factors, microclimate, amount of resources) and the standard geometric measurements (area and connectivity) of the patches.

During the four years of the study, “the extinction, density and occupation rate of butterflies in different areas was purely determined by their size, without affecting the remoteness between the areas or the quality measurements of the habitat”, added the researcher.

Consequently, the scientists only recorded nine extinctions in nine different patches and 15 colonisations in 13 patches over four years. According to the study, all the extinctions were linked to patches or areas with a low or poor production of fruit which would “inevitably” lead to a failure in the local recruitment of butterflies.

As a result, the smallest habitat patches had lower butterfly population sizes and higher rates of extinction, irrespective of their quality of habitat. The population sizes were small, with only tens of individuals in the “best” years, and were even smaller in smaller patches, with fewer than ten individuals.

Variation in the amount of resources, in this case the production of fruit from the host plant (Colutea hispanica), from which the larvae feed, and changes in population density during these years have made it possible to detect a high level of synchrony between different habitat fragments. This high level of synchrony is a risk to populations which might experience mass extinction in all areas experiencing adverse conditions, such as the effects of climate change.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

Further reports about: Iolana characteristics extinction geometric habitat iolas species variables

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>