Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Population dynamics - Distribution of a species of butterfly predicted using geometric variables

11.07.2008
Biologists have just recently discovered this month the distribution of the butterfly Iolana iolas, one of the endangered species in the Madrid region whose population dynamics are determined by its host plant. The new study, prepared by scientists from the King Juan Carlos University in Madrid, proposes a new path for designing conservation plans for the species using geometric variables.

The research, published in the latest edition of the magazine Oecologia (Ecology), has made it possible to determine the relative importance of the area which the butterfly Iolana iolas inhabits, as well as the connectivity between the different areas of the habitat (at a maximum distance of two kilometres from each other) in a network of 75 patches (population centres) situated in the south of the province of Madrid (Chinchón).

Three researchers from the King Juan Carlos University in Madrid have therefore presented a line of study on the spatial structure and dynamics of the butterfly different to other quality characteristics in the habitat.

The results of the study, prepared between 2003 and 2006, show that in the Iolana iolas and other species of monophagous butterflies (with clearly delimited habitat requirements), it is possible to predict the dynamics of their populations from the geometric variables of patches, “since most of the characteristics of the habitat are related to the patch area”, explained Sonia García Rabasa, the main author of the article, to SINC.

Researchers have concentrated on factors that determine the distribution, extinction and density of Iolana iolas populations in relation to the habitat patches formed by an endemic plant of the Iberian Peninsular, and host to butterflies, the Colutea hispanica (leguminous plant).

“The study may be of major importance for designing conservation plans for the species, and shows the relevance of geometric characteristics compared to other habitat quality properties which are frequently more difficult to achieve in field conditions”, commented the researcher.

To predict the distribution patterns it has also been important to study the synchrony between populations: “The spatial study and population dynamics of butterflies may also affect the incidence and probability of the extinction of the species”, García Rabasa pointed out.

Study of population dynamics

The fragmentation or division of the species’ habitat areas is one of the main causes of the decline of the fauna and flora, as it produces an increase in local extinctions and a reduction in recolonisation rates. Knowing the situation of the Iolana iolas, which depends on plant extension for survival, scientists have shown the effects of the characteristics of the habitat (topographic factors, microclimate, amount of resources) and the standard geometric measurements (area and connectivity) of the patches.

During the four years of the study, “the extinction, density and occupation rate of butterflies in different areas was purely determined by their size, without affecting the remoteness between the areas or the quality measurements of the habitat”, added the researcher.

Consequently, the scientists only recorded nine extinctions in nine different patches and 15 colonisations in 13 patches over four years. According to the study, all the extinctions were linked to patches or areas with a low or poor production of fruit which would “inevitably” lead to a failure in the local recruitment of butterflies.

As a result, the smallest habitat patches had lower butterfly population sizes and higher rates of extinction, irrespective of their quality of habitat. The population sizes were small, with only tens of individuals in the “best” years, and were even smaller in smaller patches, with fewer than ten individuals.

Variation in the amount of resources, in this case the production of fruit from the host plant (Colutea hispanica), from which the larvae feed, and changes in population density during these years have made it possible to detect a high level of synchrony between different habitat fragments. This high level of synchrony is a risk to populations which might experience mass extinction in all areas experiencing adverse conditions, such as the effects of climate change.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

Further reports about: Iolana characteristics extinction geometric habitat iolas species variables

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>