Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukemia - Not the protein, but its location in the cell, determines the onset of leukemia

11.07.2008
T-cell acute lymphoblastic leukemia (T-ALL)

The white blood cells in our body combat foreign intruders, such as viruses and bacteria. However, in leukemia, the formation of white blood cells is disturbed: the cells that should develop into white blood cells multiply out of control without fully maturing. This process disrupts the production of normal blood cells, making patients more susceptible to infections.

T-ALL, a particular form of leukemia, is the most prevalent cancer in children under 14 years of age and occurs predominantly between the ages of two and three. At the moment, with an optimal treatment using chemotherapy, over half of the children are cured. But scientists hope to be able to develop targeted therapies that are less toxic than chemotherapy, based on knowledge of the biological processes behind T-ALL.

Importance of the location

... more about:
»Cell »Kinase »NUP214-ABL1 »carcinogenic »leukemia

Oncogenes are often at the root of cancer. So, scientists around the world are concentrating on identifying oncogenes and their related proteins. Recent research by Kim De Keersmaecker and colleagues in Jan Cools’ research group (VIB-K.U.Leuven) indicates that the location in the cell where these proteins are found plays an important role in the entire carcinogenic mechanism. In collaboration with Maarten Fornerod (Nederlands Kanker Instituut, Amsterdam) and Gary Gilliland (Harvard Medical School, Boston), the VIB researchers have demonstrated that NUP214-ABL1, a fusion of two proteins, is carcinogenic only when it is in a protein complex near the nucleus of the cell. Located at another place in the cell, NUP214-ABL1 does not lead to cancer. This finding sheds new light on the study of carcinogenic processes.

A new therapeutic approach?

Many forms of cancer are caused by genetic defects in which a certain kinase becomes too active - and this is the case with NUP214-ABL1. The most obvious solution is to make the carcinogenic kinase inactive, and so kinase inhibitors are usually used to combat these kinds of cancers. However, the carcinogenic kinase often becomes resistant to these inhibitors - which is certainly true for T-ALL. So, scientists are actively seeking alternative approaches.

De Keersmaecker’s recent research results now offer a possibility. Indeed, the scientists have shown in cells that NUP214-ABL1 is no longer carcinogenic when it cannot bind with the protein complex in the vicinity of the cell nucleus. On the basis of these results, the researchers want to further investigate the therapeutic possibilities of compounds that render binding between the complex and NUP214-ABL1 impossible. This study also indicates that the location of proteins can play an important role in other forms of cancer/leukemia as well.

Joke Comijn | alfa
Further information:
http://www.vib.be

Further reports about: Cell Kinase NUP214-ABL1 carcinogenic leukemia

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>