Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming in on genetic shuffling

10.07.2008
Scientists generate the most precise map of genetic recombination ever

Genetic recombination, the process by which sexually reproducing organisms shuffle their genetic material when producing germ cells, leads to offspring with a new genetic make-up and influences the course of evolution.

In the current issue of Nature, researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, present the most precise map of genetic recombination yet. The study sheds light on fundamental questions about genetic shuffling and has implications for the tracking of disease genes and their inheritance.

In order to generate germ cells, sexually reproducing organisms undergo a complex series of cell divisions (meiosis) that includes the shuffling of genetic material inherited from the two parents. Equivalent chromosomes from mother and father pair up and exchange sections of DNA in a process called crossover. In a different type of recombination, called non-crossover, a small piece of DNA is copied from one chromosome onto the other without reciprocal exchange leading to gene conversion.

Non-crossovers are minute events with a subtler effect than the exchange of larger fragments, but both types of recombination can increase genetic diversity and explain why organisms of the same species differ in many ways. Both types of recombination can also act to separate the transmission of neighbouring genes, which are normally inherited together.

The groups of Lars Steinmetz at EMBL and Wolfgang Huber at EMBL-EBI have produced the most detailed map to date of recombination events in the yeast genome.

“Our map has the highest resolution of recombination events that currently exists for any organism. We can locate crossovers and even hard-to-trace non-crossovers, typically with a precision of about 80 bases. This resolution is 20 times higher than in any existing yeast map and more than 360 times higher than a recent human map,” says Steinmetz.

The map revealed many new insights into the organisation of recombination in yeast. On average over 150 recombination events were observed during a typical meiosis. These events did not occur uniformly across the genome. The recombination rate varied according to location, with events concentrated at so-called hotspots, some of which favoured either crossovers or non-crossovers. The researchers also found evidence for interference between crossovers and non-crossovers - a phenomenon previously only known to occur between crossovers - that makes it unlikely for two recombination events to happen in close proximity.

The fundamental principles of recombination are likely to be shared between yeast and humans. “Our map expands our understanding of crossover and provides a wealth of new information about non-crossovers and gene conversion. It will act as a reference for future research into recombination,” says Richard Bourgon from Huber's group, who developed the statistical methodology for this new type of data.

The insights gained will not only help tackle questions about the basic mechanisms of recombination; they will also have practical implications for the tracking of disease genes in humans.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.de
http://www.embl.org/aboutus/news/press/2008/09jul08/index.html

Further reports about: non-crossover organism recombination shuffling

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>