Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zooming in on genetic shuffling

10.07.2008
Scientists generate the most precise map of genetic recombination ever

Genetic recombination, the process by which sexually reproducing organisms shuffle their genetic material when producing germ cells, leads to offspring with a new genetic make-up and influences the course of evolution.

In the current issue of Nature, researchers at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and the EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, present the most precise map of genetic recombination yet. The study sheds light on fundamental questions about genetic shuffling and has implications for the tracking of disease genes and their inheritance.

In order to generate germ cells, sexually reproducing organisms undergo a complex series of cell divisions (meiosis) that includes the shuffling of genetic material inherited from the two parents. Equivalent chromosomes from mother and father pair up and exchange sections of DNA in a process called crossover. In a different type of recombination, called non-crossover, a small piece of DNA is copied from one chromosome onto the other without reciprocal exchange leading to gene conversion.

Non-crossovers are minute events with a subtler effect than the exchange of larger fragments, but both types of recombination can increase genetic diversity and explain why organisms of the same species differ in many ways. Both types of recombination can also act to separate the transmission of neighbouring genes, which are normally inherited together.

The groups of Lars Steinmetz at EMBL and Wolfgang Huber at EMBL-EBI have produced the most detailed map to date of recombination events in the yeast genome.

“Our map has the highest resolution of recombination events that currently exists for any organism. We can locate crossovers and even hard-to-trace non-crossovers, typically with a precision of about 80 bases. This resolution is 20 times higher than in any existing yeast map and more than 360 times higher than a recent human map,” says Steinmetz.

The map revealed many new insights into the organisation of recombination in yeast. On average over 150 recombination events were observed during a typical meiosis. These events did not occur uniformly across the genome. The recombination rate varied according to location, with events concentrated at so-called hotspots, some of which favoured either crossovers or non-crossovers. The researchers also found evidence for interference between crossovers and non-crossovers - a phenomenon previously only known to occur between crossovers - that makes it unlikely for two recombination events to happen in close proximity.

The fundamental principles of recombination are likely to be shared between yeast and humans. “Our map expands our understanding of crossover and provides a wealth of new information about non-crossovers and gene conversion. It will act as a reference for future research into recombination,” says Richard Bourgon from Huber's group, who developed the statistical methodology for this new type of data.

The insights gained will not only help tackle questions about the basic mechanisms of recombination; they will also have practical implications for the tracking of disease genes in humans.

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.de
http://www.embl.org/aboutus/news/press/2008/09jul08/index.html

Further reports about: non-crossover organism recombination shuffling

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>