Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superfast Muscles in Songbirds

10.07.2008
Certain songbirds can contract their vocal muscles 100 times faster than humans can blink an eye – placing the birds with a handful of animals that have evolved superfast muscles, University of Utah researchers found.

“We discovered that the European starling (found throughout Eurasia and North-America) and the zebrafinch (found in Australia and Indonesia) control their songs with the fastest-contracting muscle type yet described,” says Coen Elemans, who conducted the study as a postdoctoral researcher in biology at the University of Utah.

Elemans and his colleagues are publishing their findings in the Wednesday, July 9, edition of the Public Library of Science’s online journal PLoS ONE.

“Superfast muscles were previously known only from the sound-producing organs of rattlesnakes, several fish and the ringdove,” Elemans says. “We now have shown that songbirds also evolved this extreme performance muscle type, suggesting these muscles – once thought extraordinary – are more common than previously believed.”

... more about:
»Biology »Elemans »Frequency »volume

While the study examined two species of songbirds, “it is very likely that all songbirds have these muscles,” he adds.

Elemans, the study’s first author, now is a postdoctoral researcher in biology at the University of Southern Denmark. He conducted the study with Franz Goller, a University of Utah associate professor of biology; and two University of Pennsylvania scientists: Andrew Mead, a doctoral student, and Lawrence Rome, a professor of biology.

“Songbirds use complex song to communicate with one another,” Elemans says. “Many species are able to change the volume and-or frequency of their song faster than ordinary vertebrate muscles are able to contract.”

To conduct the study, the biologists measured vocal muscle activity in freely singing birds and made laboratory measurements of isolated muscles.

They found the zebrafinch and European starling can contract and relax their vocal muscles in 3 to 4 milliseconds, or three-thousandths to four-thousandths of a second, which is 100 times faster than the 300 milliseconds to 400 milliseconds (three-tenths to four-tenths of a second) it takes for humans to blink an eye, Elemans says.

The birds’ vocal muscles move structures analogous to “vocal folds” in humans. The muscles change the position and stiffness of these folds to alter the volume and frequency of the sound.

Superfast muscles can produce mechanical work or power at more than 100 hertz (times per second) and these superfast vocal muscles at up to 250 hertz, which means the birds can turn elements of their song on and off 250 times per second, Elemans says.

These frequencies are known as “modulation frequencies” that are imposed on the sound to control or modulate the volume and frequency of the bird’s song.

“By having these extraordinary muscles, birds have a more precise control of their voice and can actively change the volume and frequency of their song faster than previously thought physically possible,” Elemans says.

Contacts:
-- Coen Elemans, former U of Utah postdoctoral researcher, now at University of Southern Denmark – cell 011-45-2477-4173, office 011-45-6550-4453, coen.elemans@gmail.com [Elemans won’t be at his office until July 10, and cell phone reception is poor, so leave message on cell number if he doesn’t answer. Time in Denmark is eight hours ahead of MDT.]

Lee Siegel | Newswise Science News
Further information:
http://www.utah.edu

Further reports about: Biology Elemans Frequency volume

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>