Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superfast Muscles in Songbirds

10.07.2008
Certain songbirds can contract their vocal muscles 100 times faster than humans can blink an eye – placing the birds with a handful of animals that have evolved superfast muscles, University of Utah researchers found.

“We discovered that the European starling (found throughout Eurasia and North-America) and the zebrafinch (found in Australia and Indonesia) control their songs with the fastest-contracting muscle type yet described,” says Coen Elemans, who conducted the study as a postdoctoral researcher in biology at the University of Utah.

Elemans and his colleagues are publishing their findings in the Wednesday, July 9, edition of the Public Library of Science’s online journal PLoS ONE.

“Superfast muscles were previously known only from the sound-producing organs of rattlesnakes, several fish and the ringdove,” Elemans says. “We now have shown that songbirds also evolved this extreme performance muscle type, suggesting these muscles – once thought extraordinary – are more common than previously believed.”

... more about:
»Biology »Elemans »Frequency »volume

While the study examined two species of songbirds, “it is very likely that all songbirds have these muscles,” he adds.

Elemans, the study’s first author, now is a postdoctoral researcher in biology at the University of Southern Denmark. He conducted the study with Franz Goller, a University of Utah associate professor of biology; and two University of Pennsylvania scientists: Andrew Mead, a doctoral student, and Lawrence Rome, a professor of biology.

“Songbirds use complex song to communicate with one another,” Elemans says. “Many species are able to change the volume and-or frequency of their song faster than ordinary vertebrate muscles are able to contract.”

To conduct the study, the biologists measured vocal muscle activity in freely singing birds and made laboratory measurements of isolated muscles.

They found the zebrafinch and European starling can contract and relax their vocal muscles in 3 to 4 milliseconds, or three-thousandths to four-thousandths of a second, which is 100 times faster than the 300 milliseconds to 400 milliseconds (three-tenths to four-tenths of a second) it takes for humans to blink an eye, Elemans says.

The birds’ vocal muscles move structures analogous to “vocal folds” in humans. The muscles change the position and stiffness of these folds to alter the volume and frequency of the sound.

Superfast muscles can produce mechanical work or power at more than 100 hertz (times per second) and these superfast vocal muscles at up to 250 hertz, which means the birds can turn elements of their song on and off 250 times per second, Elemans says.

These frequencies are known as “modulation frequencies” that are imposed on the sound to control or modulate the volume and frequency of the bird’s song.

“By having these extraordinary muscles, birds have a more precise control of their voice and can actively change the volume and frequency of their song faster than previously thought physically possible,” Elemans says.

Contacts:
-- Coen Elemans, former U of Utah postdoctoral researcher, now at University of Southern Denmark – cell 011-45-2477-4173, office 011-45-6550-4453, coen.elemans@gmail.com [Elemans won’t be at his office until July 10, and cell phone reception is poor, so leave message on cell number if he doesn’t answer. Time in Denmark is eight hours ahead of MDT.]

Lee Siegel | Newswise Science News
Further information:
http://www.utah.edu

Further reports about: Biology Elemans Frequency volume

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>