Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Breakthrough Antimicrobial Coatings

10.07.2008
A team of researchers in Auburn University’s Samuel Ginn College of Engineering has produced new antimicrobial coatings with potential to prevent diseases from spreading on contaminated surfaces – possibly solving a growing problem not only in hospitals but also in schools, offices, airplanes and elsewhere.

Led by Virginia Davis, assistant professor in the Department of Chemical Engineering, and Aleksandr Simonian, professor of materials engineering in the Department of Mechanical Engineering, the Auburn researchers mixed solutions of lysozyme, a natural product with antimicrobial properties found in egg whites and human tears, with single-walled carbon nanotubes, or SWNTs, which are strong, microscopic pieces of carbon. SWNTs, at one nanometer in diameter, are a perfect cylinder of carbon and keep the lysozyme intact in the coating.

“Lysozyme is used in some commercial products such as Biotene mouthwash,” said Davis. “However, lysozyme itself is not as tough. Single-walled carbon nanotubes, on the other hand, are among the strongest materials known to man. While they are 100 times as strong as steel, they have only one-sixth the weight.”

By using a process called layer-by-layer deposition, the team demonstrated the inability of intact Staphylococcus aureus cells to grow on antimicrobial surfaces.

... more about:
»Carbon »Nanotube »antimicrobial

“Disinfection generally requires rigorous cleaning with solvent that must remain wet for a given period of time to ensure that surface germs are killed,” said Davis. “In contrast, we have created a surface that is inherently antimicrobial, so how long it is wet is not an issue.”

Davis’ research paper, “Strong Antimicrobial Coatings: Single-Walled Carbon Nanotubes Armored with Biopolymers,” was recently featured in NanoLetters, a premier journal in the field, frequently cited by top researchers.

“The material presented in NanoLetters is only the beginning,” said Davis. “We plan to adapt processing to enable the assembly of coatings on a much larger scale. As a foundation for future applications, the combination of single-walled carbon nanotubes with DNA, proteins and enzymes enables a range of possibilities for sensing and smart-functionality capabilities.”

Davis’ research and teaching expertise is related to SWNTs, their dispersion and shear alignment, which involves nanotube exploitation of specific properties and alignment across large spaces. She is a former student of Matteo Pasquali, associate professor of chemical and biomolecular engineering at Rice University, and Nobel Prize winner Richard E. Smalley. Simonian is a recognized expert in smart bio-functionalized materials and bio-sensing. He founded the biosensors laboratory at Yerevan Physics Institute in Armenia and serves as a member of the Auburn University Detection and Food Safety Center.

Graduate student Shankar Balasubramanian, whose expertise is in biosensors and antimicrobial materials, and postdoctoral fellow Dhriti Nepal, whose background is in SWNT-biopolymer dispersion, contributed to the project.

Davis’ paper can be read online at http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/asap/abs/nl080522t.html .

The release and photos can be viewed on the Auburn University Web site at http://wireeagle.auburn.edu/news/388 .

Auburn University | Newswise Science News
Further information:
http://www.auburn.edu

Further reports about: Carbon Nanotube antimicrobial

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>