Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Factors That Affect Organic Device Efficiency Revealed

10.07.2008
Organic-based devices, such as organic light-emitting diodes, require a transparent conductive layer with a high work function, meaning it promotes injection of electron holes into an organic layer to produce more light.

Research presented on July 8 at the International Conference on Science and Technology of Synthetic Metals in Brazil provides insight into factors that influence the injection efficiency. A balanced injection of positive and negative charge carriers into the organic layer is important to achieve high quantum efficiency, but the interface between the metallic coating and organic layer where the injection occurs is poorly understood.

Placing an organic layer on top of the conductive layer modifies each layer’s individual work function, or the minimum energy needed to extract the first electron from the metal.

“Measuring the work functions independently for each layer does not provide an indication of how their energy levels match when they touch each other,” explained Jean-Luc Brédas, a computational materials chemist, professor in the Georgia Institute of Technology’s School of Chemistry and Biochemistry and Georgia Research Alliance Eminent Scholar.

... more about:
»Brédas »Injection »Molecules »Oxide »indium »monolayer

The energy levels for each layer should align when attached; otherwise, a barrier will form and a higher voltage will be required to send current in.

With funding from the Office of Naval Research, Brédas first developed a theoretical model of the interface between conventional metals and a single layer of organic molecules forming a self-assembled monolayer on the metal. His goal was to determine how the metal work function could be modified by depositing the self-assembled monolayer.

Brédas and postdoctoral research fellow Georg Heimel, who is now at the Humboldt University in Berlin, looked for changes in the work function of gold when they modified the chemical nature of the head group of the organic molecules in the self-assembled monolayer and the nature of the docking group, which directly connected the organic layer and metal.

The study, published in the April 2007 issue of Nano Letters, showed that changing the head group of the organic molecules located far from the surface and changing the docking group provided two nearly independent ways to modify the metal work function.

While studying two metal substrates – gold and silver – the researchers found that even though the chemical interface between the metal and thiol-based self-assembled monolayer were different, the organic-covered metals had virtually identical work functions.

Postdoctoral research fellow Pavel Paramonov, who is now an assistant research professor at the University of Akron, expanded the original work to model the interface between a self-assembled monolayer and indium tin oxide, the conducting material commonly used as the transparent electrode in liquid crystal displays and organic light-emitting diodes.

“Researchers frequently cover the hydrophilic indium tin oxide surface with a self-assembled monolayer containing a hydrophobic subgroup pointing away from the surface, providing much better adherence and compatibility with the active organic layer that comes on top,” said Brédas.

The cover layer also prevents the indium from diffusing into the active organic layer and degrading the device, but adding this layer also provides a way to fine-tune the work function.

With funding from the Solvay Group, Paramonov modeled the indium tin oxide surface, which was a complex task because indium tin oxide is not stoichiometric – every vendor’s indium tin oxide is somewhat different. Then he modeled the binding of a self-assembled monolayer of phosphonic acid to the indium tin oxide surface. Paramonov’s first goal was to determine how the oxygen and phosphorus atoms of the self-assembled monolayer bind to the indium tin oxide surface.

In collaboration with Seth Marder, a professor in the Georgia Tech School of Chemistry and Biochemistry, and Neal Armstrong, a professor in the Department of Chemistry at the University of Arizona, they were able to characterize the main binding modes of the phosphonic acid molecules on indium tin oxide. This work has led to further research characterizing the impact of the self-assembled monolayer on the indium tin oxide work function, according to Brédas.

“More theoretical work needs to be done to study conducting oxides used as transparent electrodes in organic solar cells and organic transistors,” added Brédas. “On the experimental side, the quality of the self-assembled monolayer coverage also needs to be improved.”

Researchers usually design devices with potentially well-aligned energy levels when the layers are measured individually, but they should be examining the layers when they are attached, according to Brédas. This is because the reorganization of the chemical, electronic and geometric structures of the two layers at the interface has a major impact on the overall device characteristics.

Technical Contact: Jean-Luc Brédas (404-385-4986); E-mail: (jean-luc.bredas@chemistry.gatech.edu).

Abby Vogel | Newswise Science News
Further information:
http://www.chemistry.gatech.edu

Further reports about: Brédas Injection Molecules Oxide indium monolayer

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>