Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Fly Gene Study Could Yield New Flu Treatments

10.07.2008
Scientists may be able to stave off influenza infection by targeting one of more than 100 proteins inside host cells on which the virus depends. These potential drug targets are the result of a study in which researchers tested the ability of a modified influenza virus to infect fruit fly cells.

As they design new drugs to fight off influenza, scientists may not need to attack the virus directly. Instead, they may be able to stave off infection by targeting one of more than 100 proteins inside host cells on which the virus depends.

These potential drug targets are the result of a study in which scientists, led by Howard Hughes Medical Institute investigator Paul Ahlquist and colleague Yoshihiro Kawaoka at the University of Wisconsin-Madison, tested the ability of a modified influenza virus to infect fruit fly cells. “Our findings give us considerable hope that—with a large number of host targets to choose from—we could develop drugs to more stably suppress the virus and not allow the virus to evolve nearly as quickly to generate resistance,” Ahlquist said. The team described their findings in a July 9, 2008, advance online publication of the journal Nature.

Viruses possess only a limited number of genes, so they must hijack a host cell’s own protein machinery to enter the cell and replicate their genes. Relatively few of influenza’s interactions with host proteins are understood, according to Ahlquist, and this has limited drug development.

... more about:
»Ahlquist »Cell »Infection »Influenza

“So far, antiviral treatments against influenza have targeted specific viral enzymes or functions,” he said. “The problem has been that the virus can mutate itself to develop resistance to these drugs. Our hope is that by identifying host functions on which the influenza virus depends, we can develop drugs that target these functions. And since those functions are encoded by the host, the virus cannot use simple mutations to develop resistance to such drugs.”

Although fruit flies are not naturally infected by the influenza virus, Ahlquist and his colleagues knew the fly would be a powerful tool in identifying the genes and proteins that facilitate infection. A great many fly genes have counterparts in humans, and the researchers could analyze the function of individual fly genes using a technique known as RNA interference. So the researchers genetically altered influenza virus so that it could infect cultured fruit fly cells grown in the laboratory. They also added a gene that would produce a telltale fluorescence when the virus successfully replicated in fly cells.

They next used RNA interference -- treating fly cells with small snippets of RNA -- to individually suppress the function of each of 13,071 genes, representing 90 percent of all fly genes. If a gene is important for allowing the virus to replicate, fly cells in which that gene had been shut off would not emit the fluorescent signal signifying infection. Using this screen, the researchers identified more than 100 host cell genes that the virus depended on for infection.

“We found that the virus depends on the function of fly genes in a wide range of cellular processes,” said Ahlquist. “This tells us that quite a variety of host functions are important to the virus and that there could be a broad range of options for antiviral drugs.”

The researchers wanted to be sure that their findings were relevant for influenza infections that occur outside of the laboratory. So, as an initial check, they tested the ability of natural strains of the virus to infect mammalian cells lacking three of the genes they had identified in the fruit fly cells. The genes they chose participate in three different cellular processes known to be involved in the life cycle of the virus. They found that suppressing the function of any of the three diverse genes—called ATP6V0D1, COX6A1 and NXF1—thwarted viral replication.

The researchers also tested how blocking these genes might affect infection with other viruses, and found that all three genes were influenza-specific. Suppressing them did not affect replication of two other viruses they tested. Thus, said Ahlquist, the influenza virus functions in a way that is distinct from the other viruses and that may offer a prime target for influenza-specific antiviral drugs.

Jennifer Michalowski | Newswise Science News
Further information:
http://www.hhmi.org

Further reports about: Ahlquist Cell Infection Influenza

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>