Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Fly Gene Study Could Yield New Flu Treatments

10.07.2008
Scientists may be able to stave off influenza infection by targeting one of more than 100 proteins inside host cells on which the virus depends. These potential drug targets are the result of a study in which researchers tested the ability of a modified influenza virus to infect fruit fly cells.

As they design new drugs to fight off influenza, scientists may not need to attack the virus directly. Instead, they may be able to stave off infection by targeting one of more than 100 proteins inside host cells on which the virus depends.

These potential drug targets are the result of a study in which scientists, led by Howard Hughes Medical Institute investigator Paul Ahlquist and colleague Yoshihiro Kawaoka at the University of Wisconsin-Madison, tested the ability of a modified influenza virus to infect fruit fly cells. “Our findings give us considerable hope that—with a large number of host targets to choose from—we could develop drugs to more stably suppress the virus and not allow the virus to evolve nearly as quickly to generate resistance,” Ahlquist said. The team described their findings in a July 9, 2008, advance online publication of the journal Nature.

Viruses possess only a limited number of genes, so they must hijack a host cell’s own protein machinery to enter the cell and replicate their genes. Relatively few of influenza’s interactions with host proteins are understood, according to Ahlquist, and this has limited drug development.

... more about:
»Ahlquist »Cell »Infection »Influenza

“So far, antiviral treatments against influenza have targeted specific viral enzymes or functions,” he said. “The problem has been that the virus can mutate itself to develop resistance to these drugs. Our hope is that by identifying host functions on which the influenza virus depends, we can develop drugs that target these functions. And since those functions are encoded by the host, the virus cannot use simple mutations to develop resistance to such drugs.”

Although fruit flies are not naturally infected by the influenza virus, Ahlquist and his colleagues knew the fly would be a powerful tool in identifying the genes and proteins that facilitate infection. A great many fly genes have counterparts in humans, and the researchers could analyze the function of individual fly genes using a technique known as RNA interference. So the researchers genetically altered influenza virus so that it could infect cultured fruit fly cells grown in the laboratory. They also added a gene that would produce a telltale fluorescence when the virus successfully replicated in fly cells.

They next used RNA interference -- treating fly cells with small snippets of RNA -- to individually suppress the function of each of 13,071 genes, representing 90 percent of all fly genes. If a gene is important for allowing the virus to replicate, fly cells in which that gene had been shut off would not emit the fluorescent signal signifying infection. Using this screen, the researchers identified more than 100 host cell genes that the virus depended on for infection.

“We found that the virus depends on the function of fly genes in a wide range of cellular processes,” said Ahlquist. “This tells us that quite a variety of host functions are important to the virus and that there could be a broad range of options for antiviral drugs.”

The researchers wanted to be sure that their findings were relevant for influenza infections that occur outside of the laboratory. So, as an initial check, they tested the ability of natural strains of the virus to infect mammalian cells lacking three of the genes they had identified in the fruit fly cells. The genes they chose participate in three different cellular processes known to be involved in the life cycle of the virus. They found that suppressing the function of any of the three diverse genes—called ATP6V0D1, COX6A1 and NXF1—thwarted viral replication.

The researchers also tested how blocking these genes might affect infection with other viruses, and found that all three genes were influenza-specific. Suppressing them did not affect replication of two other viruses they tested. Thus, said Ahlquist, the influenza virus functions in a way that is distinct from the other viruses and that may offer a prime target for influenza-specific antiviral drugs.

Jennifer Michalowski | Newswise Science News
Further information:
http://www.hhmi.org

Further reports about: Ahlquist Cell Infection Influenza

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>