Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Fly Gene Study Could Yield New Flu Treatments

10.07.2008
Scientists may be able to stave off influenza infection by targeting one of more than 100 proteins inside host cells on which the virus depends. These potential drug targets are the result of a study in which researchers tested the ability of a modified influenza virus to infect fruit fly cells.

As they design new drugs to fight off influenza, scientists may not need to attack the virus directly. Instead, they may be able to stave off infection by targeting one of more than 100 proteins inside host cells on which the virus depends.

These potential drug targets are the result of a study in which scientists, led by Howard Hughes Medical Institute investigator Paul Ahlquist and colleague Yoshihiro Kawaoka at the University of Wisconsin-Madison, tested the ability of a modified influenza virus to infect fruit fly cells. “Our findings give us considerable hope that—with a large number of host targets to choose from—we could develop drugs to more stably suppress the virus and not allow the virus to evolve nearly as quickly to generate resistance,” Ahlquist said. The team described their findings in a July 9, 2008, advance online publication of the journal Nature.

Viruses possess only a limited number of genes, so they must hijack a host cell’s own protein machinery to enter the cell and replicate their genes. Relatively few of influenza’s interactions with host proteins are understood, according to Ahlquist, and this has limited drug development.

... more about:
»Ahlquist »Cell »Infection »Influenza

“So far, antiviral treatments against influenza have targeted specific viral enzymes or functions,” he said. “The problem has been that the virus can mutate itself to develop resistance to these drugs. Our hope is that by identifying host functions on which the influenza virus depends, we can develop drugs that target these functions. And since those functions are encoded by the host, the virus cannot use simple mutations to develop resistance to such drugs.”

Although fruit flies are not naturally infected by the influenza virus, Ahlquist and his colleagues knew the fly would be a powerful tool in identifying the genes and proteins that facilitate infection. A great many fly genes have counterparts in humans, and the researchers could analyze the function of individual fly genes using a technique known as RNA interference. So the researchers genetically altered influenza virus so that it could infect cultured fruit fly cells grown in the laboratory. They also added a gene that would produce a telltale fluorescence when the virus successfully replicated in fly cells.

They next used RNA interference -- treating fly cells with small snippets of RNA -- to individually suppress the function of each of 13,071 genes, representing 90 percent of all fly genes. If a gene is important for allowing the virus to replicate, fly cells in which that gene had been shut off would not emit the fluorescent signal signifying infection. Using this screen, the researchers identified more than 100 host cell genes that the virus depended on for infection.

“We found that the virus depends on the function of fly genes in a wide range of cellular processes,” said Ahlquist. “This tells us that quite a variety of host functions are important to the virus and that there could be a broad range of options for antiviral drugs.”

The researchers wanted to be sure that their findings were relevant for influenza infections that occur outside of the laboratory. So, as an initial check, they tested the ability of natural strains of the virus to infect mammalian cells lacking three of the genes they had identified in the fruit fly cells. The genes they chose participate in three different cellular processes known to be involved in the life cycle of the virus. They found that suppressing the function of any of the three diverse genes—called ATP6V0D1, COX6A1 and NXF1—thwarted viral replication.

The researchers also tested how blocking these genes might affect infection with other viruses, and found that all three genes were influenza-specific. Suppressing them did not affect replication of two other viruses they tested. Thus, said Ahlquist, the influenza virus functions in a way that is distinct from the other viruses and that may offer a prime target for influenza-specific antiviral drugs.

Jennifer Michalowski | Newswise Science News
Further information:
http://www.hhmi.org

Further reports about: Ahlquist Cell Infection Influenza

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>