Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Fly Gene Study Could Yield New Flu Treatments

10.07.2008
Scientists may be able to stave off influenza infection by targeting one of more than 100 proteins inside host cells on which the virus depends. These potential drug targets are the result of a study in which researchers tested the ability of a modified influenza virus to infect fruit fly cells.

As they design new drugs to fight off influenza, scientists may not need to attack the virus directly. Instead, they may be able to stave off infection by targeting one of more than 100 proteins inside host cells on which the virus depends.

These potential drug targets are the result of a study in which scientists, led by Howard Hughes Medical Institute investigator Paul Ahlquist and colleague Yoshihiro Kawaoka at the University of Wisconsin-Madison, tested the ability of a modified influenza virus to infect fruit fly cells. “Our findings give us considerable hope that—with a large number of host targets to choose from—we could develop drugs to more stably suppress the virus and not allow the virus to evolve nearly as quickly to generate resistance,” Ahlquist said. The team described their findings in a July 9, 2008, advance online publication of the journal Nature.

Viruses possess only a limited number of genes, so they must hijack a host cell’s own protein machinery to enter the cell and replicate their genes. Relatively few of influenza’s interactions with host proteins are understood, according to Ahlquist, and this has limited drug development.

... more about:
»Ahlquist »Cell »Infection »Influenza

“So far, antiviral treatments against influenza have targeted specific viral enzymes or functions,” he said. “The problem has been that the virus can mutate itself to develop resistance to these drugs. Our hope is that by identifying host functions on which the influenza virus depends, we can develop drugs that target these functions. And since those functions are encoded by the host, the virus cannot use simple mutations to develop resistance to such drugs.”

Although fruit flies are not naturally infected by the influenza virus, Ahlquist and his colleagues knew the fly would be a powerful tool in identifying the genes and proteins that facilitate infection. A great many fly genes have counterparts in humans, and the researchers could analyze the function of individual fly genes using a technique known as RNA interference. So the researchers genetically altered influenza virus so that it could infect cultured fruit fly cells grown in the laboratory. They also added a gene that would produce a telltale fluorescence when the virus successfully replicated in fly cells.

They next used RNA interference -- treating fly cells with small snippets of RNA -- to individually suppress the function of each of 13,071 genes, representing 90 percent of all fly genes. If a gene is important for allowing the virus to replicate, fly cells in which that gene had been shut off would not emit the fluorescent signal signifying infection. Using this screen, the researchers identified more than 100 host cell genes that the virus depended on for infection.

“We found that the virus depends on the function of fly genes in a wide range of cellular processes,” said Ahlquist. “This tells us that quite a variety of host functions are important to the virus and that there could be a broad range of options for antiviral drugs.”

The researchers wanted to be sure that their findings were relevant for influenza infections that occur outside of the laboratory. So, as an initial check, they tested the ability of natural strains of the virus to infect mammalian cells lacking three of the genes they had identified in the fruit fly cells. The genes they chose participate in three different cellular processes known to be involved in the life cycle of the virus. They found that suppressing the function of any of the three diverse genes—called ATP6V0D1, COX6A1 and NXF1—thwarted viral replication.

The researchers also tested how blocking these genes might affect infection with other viruses, and found that all three genes were influenza-specific. Suppressing them did not affect replication of two other viruses they tested. Thus, said Ahlquist, the influenza virus functions in a way that is distinct from the other viruses and that may offer a prime target for influenza-specific antiviral drugs.

Jennifer Michalowski | Newswise Science News
Further information:
http://www.hhmi.org

Further reports about: Ahlquist Cell Infection Influenza

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>