Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argyrin: natural substance raises hope for new cancer therapies

09.07.2008
Scientists at HZI, MHH and LUH publish previously-unknown chemical mechanism

The effective treatment of many forms of cancer continues to pose a major problem for medicine. Many tumours fail to respond to standard forms of chemotherapy or become resistant to the medication.

Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, the Hannover Medical School (MHH) and Leibniz-Universität (LUH) in Hanover have now discovered a chemical mechanism with which a natural substance - argyrin - destroys tumours. Today, the researchers publish their findings in the renowned scientific journal "CancerCell".

The basis for this breakthrough was an observation made by the MHH scientist Prof. Nisar Malek: he had been studying the role of a certain protein - a so-called cyclin-kinase inhibitor - in the development of cancer. In the process, Malek noted that mice in which the breakdown of the kinase inhibitor was suppressed by genetic change have a significantly lower risk of suffering from intestinal cancer. "I needed a substance that would prevent the breakdown of the protein that I was investigating in the cancer cells," says Nisar Malek: "This molecule, in all likelihood, would make a good anti-cancer agent."

... more about:
»Argyrin »Cell »Chemical »HZI »Malek »Nisar »tumour

Nisar Malek approached Dr. Ronald Frank, a chemist at HZI, with his considerations. Ronald Frank has established extensive collections of chemical substances at the HZI that can be tested for their biological activity in a fast, automated procedure. The two agreed to develop a special cell line in which the quantity of the cyclin kinase inhibitor can be measured using simple optical methods. Ronald Frank: "We adapted this cell based assay system to allow automated screening of large numbers of different chemical substances.”

Myxobacteria provide another potential cancer medicine

Malek and Frank found what they were looking for in a collection of natural substances which had originally been isolated from microorganisms which live in soil – the so called Myxobacteria. Myxobacteria have proven to be a treasure trove of potential medicines, also being used in the production of epothilone, an active agent identified at the HZI. This drug has been approved as a cancer medicine in the USA last year. "The myxobacterial agent for our purposes is argyrin," says Ronald Frank.

With this knowledge, Ronald Frank and Nisar Malek joined up with the chemist Prof. Markus Kalesse of the LUH to launch an extensive research programme to discover how argyrin can be produced chemically and how it functions. In the process they stumbled upon a completely new mechanism, which was subsequently revealed in a publication in the non plus ultra of oncology journals, "CancerCell". "Argyrin blocks the molecular machinery of the cell which breakdowns proteins that are no longer required," explains Malek, "and thereby naturally also prevents the breakdown of the kinase inhibitor in question, the lack of which triggers cancer."

The research team has already conducted detailed studies of the effects of argyrin on mice: "When we treat animals with cancer with argyrin," says Nisar Malek, "the tumour ceases growing, it decreases by up to 50 percent and it begins to breakdown internally." Scarcely any side effects have been noted. Although the findings published in CancerCell are viewed by the scientists as an important result, it is merely the first step of a longer journey: "Research into argyrin continues at a fast pace," says Markus Kalesse: "We are already altering the argyrin molecule in all details and looking to see if it is possible to improve its performance further. Our goal is to submit such an optimised structure for clinical testing in the near future."

Title of the Original Publication:
Irina Nickeleit, Steffen Zender, Florenz Sasse, Robert Geffers, Gudrun Brandes, Inga Sörensen, Heinrich Steinmetz, Stefan Kubicka, Teresa Carlomagno, Dirk Menche, Ines Gütgemann, Jan Buer, Achim Gossler, Michael P. Manns, Markus Kalesse, Ronald Frank, and Nisar P. Malek: Argyrin A Reveals a Critical Role for the Tumor Suppressor Protein p27kip1 in Mediating Antitumor Activities in Response to Proteasome Inhibition; Cancer Cell 2008 14: 23-35.

Hannes Schlender | alfa
Further information:
http://www.helmholtz-hzi.de

Further reports about: Argyrin Cell Chemical HZI Malek Nisar tumour

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>