Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new European research network MICROENVIMET: understanding and fighting metastasis by modulating the tumour microenvironment

09.07.2008
The aggressive character of a tumour is related to the capacity of the cancer cells to form metastases from a primary tumour. Metastasis is the most serious challenge for cancer treatment.

The tumour cells can disseminate into the organism by using the blood or lymphatic stream. Recent data suggest that the site of implantation of secondary foci or metastases is preset by the elaboration of an appropriate microenvironment.

These novel information led to the emerging concept of “premetastatic niche”. In addition, cancer cells must acquire new properties ensuring their mobility and the invasion of various tissues. Cancer stem cells are thought to constitute the proliferative potential of the tumoral mass and could represent the source of cells metastasizing.

The tumour cell-centrered view of the metastatic process is now revisited taking into account the important contribution of the tumor microenvironment consisting of both cellular and non cellular components, in primary tumors as well as in secondary foci.

... more about:
»Cancer »Cells »Platform

A new European network, entitled MICROENVIMET, developed within the 7th EU framework is coordinated by Professor Agnès NOEL (Laboratory of Tumour and the Development Biology, GIGA-Cancer research center of the University of Liege, Belgium). This European scientific network entitled “Microenvimet: Understanding and fighting metastasis by modulating the tumour microenvironment through interference with the protease network” (http://www.microenvimet.eu) gathers 8 international partners. It is funded to the amount of 2.999.689 euro for 4 years by the European commission.

The purpose of the project “microenvimet” is to elucidate and understand the early mechanisms of the metastatic dissemination by studying the contribution of tumour microenvironment during various stages of epithelial cancer evolution: the primary tumour growth, the premetastatic phase preceding the dissemination of the cancer cells and the metastatic phase during which the secondary foci develop. It aims at identifying molecular targets contributing to early steps of the tumour progression. The project is focused on the mechanisms underlying the elaboration of a favorable «soil » for the establishment of metastases (“premetastatic niche”).

Its original approach consists in modifying the tumoral microenvironment, interfering with proteases which constitute important regulators of the interactions which are established between tumoral cells and their cellular and molecular microenvironment. This project is based on the exploitation of innovating technological platforms: genomic platform for the analysis of the RNA messengers and the recently identified microRNA, phage library for the development of blocking antibodies against the identified targets, platform of computer-assisted image analysis and transgenesis platform.

Didier Moreau | alfa
Further information:
http://www.ulg.ac.be
http://www.microenvimet.eu

Further reports about: Cancer Cells Platform

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>