Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A new European research network MICROENVIMET: understanding and fighting metastasis by modulating the tumour microenvironment

The aggressive character of a tumour is related to the capacity of the cancer cells to form metastases from a primary tumour. Metastasis is the most serious challenge for cancer treatment.

The tumour cells can disseminate into the organism by using the blood or lymphatic stream. Recent data suggest that the site of implantation of secondary foci or metastases is preset by the elaboration of an appropriate microenvironment.

These novel information led to the emerging concept of “premetastatic niche”. In addition, cancer cells must acquire new properties ensuring their mobility and the invasion of various tissues. Cancer stem cells are thought to constitute the proliferative potential of the tumoral mass and could represent the source of cells metastasizing.

The tumour cell-centrered view of the metastatic process is now revisited taking into account the important contribution of the tumor microenvironment consisting of both cellular and non cellular components, in primary tumors as well as in secondary foci.

... more about:
»Cancer »Cells »Platform

A new European network, entitled MICROENVIMET, developed within the 7th EU framework is coordinated by Professor Agnès NOEL (Laboratory of Tumour and the Development Biology, GIGA-Cancer research center of the University of Liege, Belgium). This European scientific network entitled “Microenvimet: Understanding and fighting metastasis by modulating the tumour microenvironment through interference with the protease network” ( gathers 8 international partners. It is funded to the amount of 2.999.689 euro for 4 years by the European commission.

The purpose of the project “microenvimet” is to elucidate and understand the early mechanisms of the metastatic dissemination by studying the contribution of tumour microenvironment during various stages of epithelial cancer evolution: the primary tumour growth, the premetastatic phase preceding the dissemination of the cancer cells and the metastatic phase during which the secondary foci develop. It aims at identifying molecular targets contributing to early steps of the tumour progression. The project is focused on the mechanisms underlying the elaboration of a favorable «soil » for the establishment of metastases (“premetastatic niche”).

Its original approach consists in modifying the tumoral microenvironment, interfering with proteases which constitute important regulators of the interactions which are established between tumoral cells and their cellular and molecular microenvironment. This project is based on the exploitation of innovating technological platforms: genomic platform for the analysis of the RNA messengers and the recently identified microRNA, phage library for the development of blocking antibodies against the identified targets, platform of computer-assisted image analysis and transgenesis platform.

Didier Moreau | alfa
Further information:

Further reports about: Cancer Cells Platform

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>