Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new European research network MICROENVIMET: understanding and fighting metastasis by modulating the tumour microenvironment

09.07.2008
The aggressive character of a tumour is related to the capacity of the cancer cells to form metastases from a primary tumour. Metastasis is the most serious challenge for cancer treatment.

The tumour cells can disseminate into the organism by using the blood or lymphatic stream. Recent data suggest that the site of implantation of secondary foci or metastases is preset by the elaboration of an appropriate microenvironment.

These novel information led to the emerging concept of “premetastatic niche”. In addition, cancer cells must acquire new properties ensuring their mobility and the invasion of various tissues. Cancer stem cells are thought to constitute the proliferative potential of the tumoral mass and could represent the source of cells metastasizing.

The tumour cell-centrered view of the metastatic process is now revisited taking into account the important contribution of the tumor microenvironment consisting of both cellular and non cellular components, in primary tumors as well as in secondary foci.

... more about:
»Cancer »Cells »Platform

A new European network, entitled MICROENVIMET, developed within the 7th EU framework is coordinated by Professor Agnès NOEL (Laboratory of Tumour and the Development Biology, GIGA-Cancer research center of the University of Liege, Belgium). This European scientific network entitled “Microenvimet: Understanding and fighting metastasis by modulating the tumour microenvironment through interference with the protease network” (http://www.microenvimet.eu) gathers 8 international partners. It is funded to the amount of 2.999.689 euro for 4 years by the European commission.

The purpose of the project “microenvimet” is to elucidate and understand the early mechanisms of the metastatic dissemination by studying the contribution of tumour microenvironment during various stages of epithelial cancer evolution: the primary tumour growth, the premetastatic phase preceding the dissemination of the cancer cells and the metastatic phase during which the secondary foci develop. It aims at identifying molecular targets contributing to early steps of the tumour progression. The project is focused on the mechanisms underlying the elaboration of a favorable «soil » for the establishment of metastases (“premetastatic niche”).

Its original approach consists in modifying the tumoral microenvironment, interfering with proteases which constitute important regulators of the interactions which are established between tumoral cells and their cellular and molecular microenvironment. This project is based on the exploitation of innovating technological platforms: genomic platform for the analysis of the RNA messengers and the recently identified microRNA, phage library for the development of blocking antibodies against the identified targets, platform of computer-assisted image analysis and transgenesis platform.

Didier Moreau | alfa
Further information:
http://www.ulg.ac.be
http://www.microenvimet.eu

Further reports about: Cancer Cells Platform

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>