Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Lost” Viruses May Contribute to AIDS

09.07.2008
Weak HIV viruses piggyback onto stronger ones, raising the possibility that the human body may harbor many more HIV viruses capable of replicating and contributing to the development of AIDS than previously thought, according to research published in BioMed Central’s open access journal, Retrovirology.

It’s widely known that only about one in every 100 HIV viruses can effectively complete the process of integrating its DNA with the DNA of the human cell -- a step that every virus must successfully complete before it can reproduce.

But a new study led by Dr. David N. Levy, an Assistant Professor of Basic Science and Craniofacial Biology at the NYU College of Dentistry, has revealed a mechanism that enables some of the other 99 percent of HIV viruses also to replicate and play a potential role in the development of AIDS.

“We’ve observed a new mode of HIV replication that involves cooperative interaction between viruses,” said Dr. Levy.

... more about:
»Aids »DNA »Development »HIV

According to Dr. Levy, HIV functions as a community, with those viruses that successfully integrate with the DNA in human cells rescuing the viruses that fail to integrate by providing them with the proteins they need to reproduce. In fact, the viruses that were once thought to be lost because they don’t integrate may have an advantage over the others because they can skip several steps in their replication cycle and reproduce faster.

“Cooperation between different viruses is yet another one of the many tricks that HIV uses to survive, and raises the possibility that there are more active viruses in the body than was previously thought. Understanding how viruses interact with each other is a key to understanding how HIV evolves and survives the body’s immune responses, which we hope could ultimately lead to the development of new ways to treat HIV infection.”

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com
http://www.retrovirology.com/

Further reports about: Aids DNA Development HIV

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>