“Lost” Viruses May Contribute to AIDS

It’s widely known that only about one in every 100 HIV viruses can effectively complete the process of integrating its DNA with the DNA of the human cell — a step that every virus must successfully complete before it can reproduce.

But a new study led by Dr. David N. Levy, an Assistant Professor of Basic Science and Craniofacial Biology at the NYU College of Dentistry, has revealed a mechanism that enables some of the other 99 percent of HIV viruses also to replicate and play a potential role in the development of AIDS.

“We’ve observed a new mode of HIV replication that involves cooperative interaction between viruses,” said Dr. Levy.

According to Dr. Levy, HIV functions as a community, with those viruses that successfully integrate with the DNA in human cells rescuing the viruses that fail to integrate by providing them with the proteins they need to reproduce. In fact, the viruses that were once thought to be lost because they don’t integrate may have an advantage over the others because they can skip several steps in their replication cycle and reproduce faster.

“Cooperation between different viruses is yet another one of the many tricks that HIV uses to survive, and raises the possibility that there are more active viruses in the body than was previously thought. Understanding how viruses interact with each other is a key to understanding how HIV evolves and survives the body’s immune responses, which we hope could ultimately lead to the development of new ways to treat HIV infection.”

Media Contact

Charlotte Webber alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors