Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Sequencing Study Reveals New Insights into Human Transcriptome

09.07.2008
Joint project of the Max-Planck-Institute for Molecular Genetics and Genomatix takes the first step towards a new picture of the mammalian genome annotation.

In a collaborative project scientists from the Max-Planck-Institute for Molecular Genetics in Berlin (MPI MolGen), Germany and Genomatix with a business in Munich, Germany and Ann Arbor, MI, USA, applied next generation sequencing and analysis methods to generate an unprecedented view at the human transcriptome.

Deep sequencing of transcripts from two human cell lines revealed so far unrecognized complexity and variability of the human transcriptome. They found that 34% of the polyadenylated transcriptome mapped to so far non-annotated genomic regions. Obviously a large number of novel gene candidates are active in the cell lines under study.

In addition, a global survey of mRNA splicing events identified 94,241 splice junctions, of which 4,096 are novel, and showed that exon skipping is the most prevalent form of alternative splicing.

... more about:
»Analysis »method »splicing »transcriptome

Details are presented in the Science report of Sultan et al. “A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome”, published online at Science Express (www.scienceexpress.org). Annotation and data visualization is publicly available at http://www.genomatix.de/MPI.html .

Dr. Marie-Laure Yaspo, Group Leader at the MPI MolGen and head scientist of the study states: ” Deep sequencing allows for the first time to explore directly the complexity and dynamics of the human transcriptome with a reasonable effort. This will lead to a new picture of the mammalian genome annotation far beyond the current state of the art. We provide here global features of alternative splicing events in human cell lines. Such a comparison of within-cell and between-cell alternative splicing events, combined with the simultaneous analysis of gene expression has never been presented before. It becomes clear that the so far available methods only delivered a part of the transcriptional landscape of mammalian cells, especially if gene regulation analysis is considered”

Dr. Martin Seifert, Vice President Business Development and Consulting at Genomatix says:

“The main biological impact is the observation of a new dimension in complexity and variability. Based on the method we could find a significant number of new transcriptional units and splice variants. Our analyses clearly show that transcription is a highly dynamic and variable process. We learned a lot by having access to such high quality data and co-developed necessary new analysis strategies with the MPI MolGen. Especially users of our brand new Genomatix Genome Analyzer will benefit from our experiences along the project, since they have access to all developed strategies.”

For more information please contact:

Dr. Martin Seifert, seifert@genomatix.de
Genomatix Software GmbH
Bayerstr. 85a
D-80335 Munich Tel.: +49-89-599 766 0
Germany Fax.: +49-89-599 766 55

Dr. Martin Seifert | Genomatix Software GmbH
Further information:
http://www.scienceexpress.org
http://www.genomatix.de/MPI.html

Further reports about: Analysis method splicing transcriptome

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>