Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Sequencing Study Reveals New Insights into Human Transcriptome

09.07.2008
Joint project of the Max-Planck-Institute for Molecular Genetics and Genomatix takes the first step towards a new picture of the mammalian genome annotation.

In a collaborative project scientists from the Max-Planck-Institute for Molecular Genetics in Berlin (MPI MolGen), Germany and Genomatix with a business in Munich, Germany and Ann Arbor, MI, USA, applied next generation sequencing and analysis methods to generate an unprecedented view at the human transcriptome.

Deep sequencing of transcripts from two human cell lines revealed so far unrecognized complexity and variability of the human transcriptome. They found that 34% of the polyadenylated transcriptome mapped to so far non-annotated genomic regions. Obviously a large number of novel gene candidates are active in the cell lines under study.

In addition, a global survey of mRNA splicing events identified 94,241 splice junctions, of which 4,096 are novel, and showed that exon skipping is the most prevalent form of alternative splicing.

... more about:
»Analysis »method »splicing »transcriptome

Details are presented in the Science report of Sultan et al. “A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome”, published online at Science Express (www.scienceexpress.org). Annotation and data visualization is publicly available at http://www.genomatix.de/MPI.html .

Dr. Marie-Laure Yaspo, Group Leader at the MPI MolGen and head scientist of the study states: ” Deep sequencing allows for the first time to explore directly the complexity and dynamics of the human transcriptome with a reasonable effort. This will lead to a new picture of the mammalian genome annotation far beyond the current state of the art. We provide here global features of alternative splicing events in human cell lines. Such a comparison of within-cell and between-cell alternative splicing events, combined with the simultaneous analysis of gene expression has never been presented before. It becomes clear that the so far available methods only delivered a part of the transcriptional landscape of mammalian cells, especially if gene regulation analysis is considered”

Dr. Martin Seifert, Vice President Business Development and Consulting at Genomatix says:

“The main biological impact is the observation of a new dimension in complexity and variability. Based on the method we could find a significant number of new transcriptional units and splice variants. Our analyses clearly show that transcription is a highly dynamic and variable process. We learned a lot by having access to such high quality data and co-developed necessary new analysis strategies with the MPI MolGen. Especially users of our brand new Genomatix Genome Analyzer will benefit from our experiences along the project, since they have access to all developed strategies.”

For more information please contact:

Dr. Martin Seifert, seifert@genomatix.de
Genomatix Software GmbH
Bayerstr. 85a
D-80335 Munich Tel.: +49-89-599 766 0
Germany Fax.: +49-89-599 766 55

Dr. Martin Seifert | Genomatix Software GmbH
Further information:
http://www.scienceexpress.org
http://www.genomatix.de/MPI.html

Further reports about: Analysis method splicing transcriptome

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>