Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lay your eggs here

09.07.2008
NC State scientists discover chemical cues that stimulate egg laying by pregnant mosquitoes

North Carolina State University scientists have figured out one reason why pregnant yellow fever mosquitoes (Aedes aegypti), one of the most important disease transmitters worldwide, choose to lay their eggs in certain outdoor water containers while eschewing others.

In a paper published in Proceedings of the National Academy of Sciences, the NC State researchers show that certain chemicals emanating from bacteria in water containers stimulate the female mosquitoes to lay their eggs. The female mosquitoes sense these chemical cues and decide that the water container is a preferable environment for their larvae to develop.

The findings could have implications for devising lures and traps that might help control yellow fever mosquito populations in equatorial locations around the globe, which would go a long way toward preventing important global diseases like dengue fever and yellow fever, say the study's lead authors, Dr. Charles Apperson and Dr. Coby Schal, professors of entomology at NC State. Postdoctoral researchers Dr. Loganathan Ponnusamy and Dr. Ning Xu and senior researcher Dr. Satoshi Nojima also co-authored the paper.

The study shows that yellow fever mosquitoes are particularly motivated to lay eggs in water containers that have just the right amounts of specific fatty acids associated with bacteria involved in the degradation of leaves and other organic matter in water. The chemicals associated with the microbial stew are far more stimulating to discerning female mosquitoes than plain water, for example, or filtered water in which the bacteria once lived.

The study used a combination of approaches, including one in which the NC State scientists presented female mosquitoes with different types of bacteria and bacterial extracts, and, in Schal's words, figured out "what turned the mosquitoes on" to lay their eggs.

"Some water-filled containers are rejected by the female mosquito," Apperson says. "If we filter the bacteria out, the mosquitoes want no part of the water container. But put the filtered bacteria back in the water container, and the mosquitoes will be stimulated to lay eggs."

Female mosquitoes are choosy when it comes to finding the proper egg-laying habitats. They do not normally lay all their eggs in one location, but instead exhibit a behavior called "skip-oviposition," distributing eggs in multiple water-filled containers.

Once the NC State scientists discerned the specific chemical compounds that stimulated increased egg-laying – a blend of fatty acids and methyl esters – they exposed the mosquitoes to varied concentrations of the chemical brew. High concentrations of the brew gave the mosquitoes pause, causing them to withhold their eggs. Lower concentrations were more convincing to mosquitoes than high concentrations, but still not as convincing as the proper amount – found to be only 10 nanograms in 30 milliliters of water.

Mosquito larvae depend on microbes in their new homes for growth and development, so it is important for mothers to be discerning when it comes to living arrangements for their young, the researchers say.

Now, the NC State scientists hope to use this choosiness against female mosquitoes. Stimulating females to lay eggs in water containers that have lethal chemicals or insect growth regulators could be another tool in the overall strategy kit to control mosquitoes – and dreaded diseases like dengue fever.

"We want to use the mosquito's egg-laying behavior against itself for control purposes," Apperson says.

The research was supported by a grant from the National Institutes of Health, the Blanton J. Whitmire Endowment and the W.M. Keck Center for Behavioral Biology.

"Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti"
Authors: Loganathan Ponnusamy, Ning Xu, Satoshi Nojima, Coby Schal and Charles Apperson, North Carolina State University; Dawn M. Wesson, Tulane University

Published: July 7, 2008, in Proceedings of the National Academy of Sciences online

Abstract: The yellow fever mosquito, Aedes aegypti, the global vector of dengue and yellow fever, is inexorably linked to water-filled human-made containers for egg laying and production of progeny. Oviposition is stimulated by cues from water containers, but the nature and origin of these cues have not been elucidated. We showed that mosquito females directed most of their eggs to bamboo and white-oak leaf infusions and only a small fraction of the eggs were laid in plain water containers. In binary choice assays we demonstrated that microorganisms in leaf infusions produced oviposition-stimulating kairomones, and using a combination of bacterial culturing approaches, bioassay-guided fractionation of bacterial extracts, and chemical analyses, we now demonstrate that specific bacteria-associated carboxylic acids and methyl esters serve as potent oviposition stimulants for gravid Ae. aegypti. Elucidation of these compounds will serve not only to better understand the chemical basis of egg laying behavior of Ae. aegypti, but these kairomones will likely enhance the efficacy of surveillance and control programs of this disease vector of substantial global public health importance.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

Further reports about: Apperson Chemical bacteria concentrations fever mosquito

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>