Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lay your eggs here

09.07.2008
NC State scientists discover chemical cues that stimulate egg laying by pregnant mosquitoes

North Carolina State University scientists have figured out one reason why pregnant yellow fever mosquitoes (Aedes aegypti), one of the most important disease transmitters worldwide, choose to lay their eggs in certain outdoor water containers while eschewing others.

In a paper published in Proceedings of the National Academy of Sciences, the NC State researchers show that certain chemicals emanating from bacteria in water containers stimulate the female mosquitoes to lay their eggs. The female mosquitoes sense these chemical cues and decide that the water container is a preferable environment for their larvae to develop.

The findings could have implications for devising lures and traps that might help control yellow fever mosquito populations in equatorial locations around the globe, which would go a long way toward preventing important global diseases like dengue fever and yellow fever, say the study's lead authors, Dr. Charles Apperson and Dr. Coby Schal, professors of entomology at NC State. Postdoctoral researchers Dr. Loganathan Ponnusamy and Dr. Ning Xu and senior researcher Dr. Satoshi Nojima also co-authored the paper.

The study shows that yellow fever mosquitoes are particularly motivated to lay eggs in water containers that have just the right amounts of specific fatty acids associated with bacteria involved in the degradation of leaves and other organic matter in water. The chemicals associated with the microbial stew are far more stimulating to discerning female mosquitoes than plain water, for example, or filtered water in which the bacteria once lived.

The study used a combination of approaches, including one in which the NC State scientists presented female mosquitoes with different types of bacteria and bacterial extracts, and, in Schal's words, figured out "what turned the mosquitoes on" to lay their eggs.

"Some water-filled containers are rejected by the female mosquito," Apperson says. "If we filter the bacteria out, the mosquitoes want no part of the water container. But put the filtered bacteria back in the water container, and the mosquitoes will be stimulated to lay eggs."

Female mosquitoes are choosy when it comes to finding the proper egg-laying habitats. They do not normally lay all their eggs in one location, but instead exhibit a behavior called "skip-oviposition," distributing eggs in multiple water-filled containers.

Once the NC State scientists discerned the specific chemical compounds that stimulated increased egg-laying – a blend of fatty acids and methyl esters – they exposed the mosquitoes to varied concentrations of the chemical brew. High concentrations of the brew gave the mosquitoes pause, causing them to withhold their eggs. Lower concentrations were more convincing to mosquitoes than high concentrations, but still not as convincing as the proper amount – found to be only 10 nanograms in 30 milliliters of water.

Mosquito larvae depend on microbes in their new homes for growth and development, so it is important for mothers to be discerning when it comes to living arrangements for their young, the researchers say.

Now, the NC State scientists hope to use this choosiness against female mosquitoes. Stimulating females to lay eggs in water containers that have lethal chemicals or insect growth regulators could be another tool in the overall strategy kit to control mosquitoes – and dreaded diseases like dengue fever.

"We want to use the mosquito's egg-laying behavior against itself for control purposes," Apperson says.

The research was supported by a grant from the National Institutes of Health, the Blanton J. Whitmire Endowment and the W.M. Keck Center for Behavioral Biology.

"Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti"
Authors: Loganathan Ponnusamy, Ning Xu, Satoshi Nojima, Coby Schal and Charles Apperson, North Carolina State University; Dawn M. Wesson, Tulane University

Published: July 7, 2008, in Proceedings of the National Academy of Sciences online

Abstract: The yellow fever mosquito, Aedes aegypti, the global vector of dengue and yellow fever, is inexorably linked to water-filled human-made containers for egg laying and production of progeny. Oviposition is stimulated by cues from water containers, but the nature and origin of these cues have not been elucidated. We showed that mosquito females directed most of their eggs to bamboo and white-oak leaf infusions and only a small fraction of the eggs were laid in plain water containers. In binary choice assays we demonstrated that microorganisms in leaf infusions produced oviposition-stimulating kairomones, and using a combination of bacterial culturing approaches, bioassay-guided fractionation of bacterial extracts, and chemical analyses, we now demonstrate that specific bacteria-associated carboxylic acids and methyl esters serve as potent oviposition stimulants for gravid Ae. aegypti. Elucidation of these compounds will serve not only to better understand the chemical basis of egg laying behavior of Ae. aegypti, but these kairomones will likely enhance the efficacy of surveillance and control programs of this disease vector of substantial global public health importance.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

Further reports about: Apperson Chemical bacteria concentrations fever mosquito

More articles from Life Sciences:

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>