Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Smart bomb' nanoparticle strategy impacts metastasis

09.07.2008
A new treatment strategy using molecular "smart bombs" to target metastasis with anti-cancer drugs leads to good results using significantly lower doses of toxic chemotherapy, with less collateral damage to surrounding tissue, according to a collaborative team of researchers at the University of California, San Diego.

By designing a "nanoparticle" drug delivery system, the UC San Diego team, led by Moores UCSD Cancer Center Director of Translational Research David Cheresh, Ph.D., has identified a way to target chemotherapy to achieve a profound impact on metastasis in pancreatic and kidney cancer in mice.

In a study to be published online the week of July 7 in advance of publication in the Proceedings of the National Academy of Sciences (PNAS), Cheresh, professor and vice chair of pathology, and members of his team report that the nanoparticle carrying a payload of chemotherapy homes in on a protein marker called integrin áíâ3 – found on the surface of certain tumor blood vessels where it is associated with development of new blood vessels and malignant tumor growth.

The team found that the nanoparticle/drug combination didn't have much impact on primary tumors, but stopped pancreatic and kidney cancers from metastasizing throughout the bodies of mice. They showed that a greatly reduced dosage of chemotherapy can achieve the desired effect because the drug selectively targets the specific blood vessels that feed the cancerous lesion and kills the lesion without destroying surrounding tissue. The destruction of healthy tissue is a side-effect when chemotherapy is administered systemically, flooding the body with cancer-killing toxins.

"We were able to establish the desired anti-cancer effect while delivering the drug at levels 15 times below what is needed when the drug is used systemically," said Cheresh. "Even more interesting is that the metastatic lesions were more sensitive to this therapy than the primary tumor."

The study is an example of an initiative that joins researchers from UC San Diego's Health Sciences and the Jacobs School of Engineering to improve health care through innovative technologies. Engineers and oncologists working together designed a nanoparticle – a microscopic-sized particle of 100 nanometers, made of various lipid-based polymers – which delivers the cancer cell-killing drug doxorubicin to the network of blood vessels supporting the tumor that express the áíâ3 protein.

"Doxorubicin is known to be an effective anti-cancer drug, but has been difficult to give patients an adequate dose without negative side effects," Cheresh said. "This new strategy represents the first time we've seen such an impact on metastatic growth, and it was accomplished without the collateral damage of weight loss or other outward signs of toxicity in the patient."

Cancer metastasis is traditionally much more difficult to treat than the primary tumor, and is what usually leads to the patient's death. Because metastasis is more reliant on new blood vessel growth, or angiogenesis, than established tumors are, Cheresh theorized that targeting the anti-cancer drug to the sites of new blood vessel growth has a preferential effect on metastatic lesions.

"Traditional cancer therapies are often limited, or non-effective over time because the toxic side effects limit the dose we can safely deliver to the patient," said Cheresh. "This new drug delivery system offers an important advance in treating metastatic disease."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Cheresh anti-cancer chemotherapy effect lesion metastasis metastatic nanoparticle

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>